EDP-OCP Measurement Technique

H.F. Okorn-Schmidt

IBM T.J. Watson Research Center Yorktown Heights, NY 10598

ERC TeleSeminar-October 26th, 2000

Acknowledgements

- IBM (OCP work since 1996)
 - David Rath
 - Henry Grabarz
 - Evgeni Gusev, Douglas Buchanan, Eduard Cartier, Michael Gribelyuk, Chris D'Emic, Matt Copel and Richard Murphy
- IMEC (OCP work 1992-1996)
 - UCP Group of Marc Heyns
 - Ivo Teerlinck, Serge Biesemans, Wolfgang Storm, Hugo Bender
- Siemens (OCP work 1989 1991)
 - Michael Huettinger, Ernst Demm, Bernd O. Kolbesen

Outline

- Introduction to OCP and EDP-OCP (V_{OC})
- OCP in Oxidizing Environment
 - Oxidation Model
- OCP in Etching Environments (EDP-OCP)
 - in HF
 - chemical oxides
 - thermal oxides
 - dielectric stacks
 - in aqueous NH₃
- OCP in SC1 (simultaneous oxidation and etching process)

Introduction

ERC Tele Seminar

History of EDP-OCP

• 1989 - 1991 work on OCP measurements for optimizing silicide etchants (at Siemens Research, Munich)

Fig. 3 shows the variation of the corrosion potential of $MoSi_2$ in a 0.6 moM $K_3Fe(CN)_6$ solution for several KOH concentrations with time. The curves 3, 4 and 5 demonstrate a good and quick removal of $MoSi_2$ from its underlayer poly-Si. The initial potential is the corrosion potential of $MoSi_2$, which is a mixed potential /3/, and after a rapid increase the pessivation potential of poly-Si respectively (100)-Si occurs. This enables the determination of etch rates of thin layers. A comparison between curves 3 and 5 shows that a higher KOH concentration leads to a more rapid removal of $MoSi_2$, but SEM investigations indicate that a higher KOH concentration lowers the selectivity to poly-Si.

Figure 3. Variation of the corrosion potential (vs. S.H.E) of a thin (300 nm) MoSi₂ layer on (100)-Si in a 0.6 mol/l K₂Fe (CN)₆ solution at various KOff concentrations and temperatures with time.

- 1992 1996 work on semiconductor oxidation and H-passivation kinetics at IMEC much of the fundamental work
- since 1996 work on mostly EDP-OCP of thermal oxides, nitrides and alternative dielctrics (high-k and stacks) and DI/O₃ chemistries

ERC Tele Seminar

How new is this technique ?

- Rest Potential measurements (OCP) have been and are very common in metal electrochemistry
- On Semiconductors only one significant literature before 1990:
 H. Gerischer and M. Luebke, Ber. Bunsenges. Phys. Chem. 92 (1988) 573.

Fig. 15 The photopotential determined by short light pulses at open circuit of an n-type Si electrode during the dissolution of the oxide after switching off the illumination and the respective current in the dork. 0.13 M NH₃F solution, $\rho H = 4$

Introduction

Introduction

Energy band model for an n-type semiconductor.

ERC Tele Seminar

Ellipsometric Results

Pseudo-dielectric functions versus photon energy for p-type Si treated in different SPM mixtures

H.F. Okorn-Schmidt, 10/26/2000

XPS Results

XPS spectra for p-type Si treated in different SPM mixtures

OCP in Oxidizing Environment

Correlation between potential difference and oxide thickness $(\Delta_{OCP} = |PMP - V_{OC} @600s \text{ immersion time}|)$

H.F. Okorn-Schmidt, 10/26/2000

Oxidation Model

(solving the Poisson Equations)

$$V = \frac{q}{8N_{Sub}\varepsilon_{ox}\varepsilon_{Si}} (4Q_{ox}^{2}\varepsilon_{ox} + 4N_{ox}Q_{ox}\varepsilon_{ox}d_{ox} + 8N_{Sub}Q_{ox}\varepsilon_{Si}d_{ox} + N_{ox}^{2}\varepsilon_{ox}d_{ox}^{2})$$

ERC Tele Seminar

Oxidation Model

$$V = nd_{ox}^{2}$$
 with $n = \frac{qN_{ox}^{2}}{8N_{Sub}\varepsilon_{Si}}$

 $V = \Delta_{OCP} (\mathbf{V})$

 $q = 1.6022 \times 10^{-19} \text{ C}$ (electronic charge)

 $\varepsilon_{Si} = 1.05 \times 10^{-19} \text{ F nm}^{-1}$ (dielectric constant for Si)

 $N_{Sub} = 6.5 \times 10^{-7} \text{ nm}^{-3}$ (doping level of the Si substrate, equals a Boron doping level of $7 \times 10^{14} \text{ cm}^{-3}$)

 N_{ox} the amount of charge in the oxide (nm⁻³)

Oxidation Model

1.2 -200 2000000000 1 -300 0.8 OCP (mV) vs. Si ref. calculated d_{ox} (nm) -400 0 0.6 0 measured OCP curve 0 -500 0 0 $d_{ox} = ((OCP-OCP_{min})/327)^{1/2}$ 0.4 0 0 fit for d_{ox} : 0 y = a * log(1 + b*x)a =0.627 (err 0.002) -600 0 0.2 0 b = 0.137 (err 0.002) 0 -700 0 0 80 160 240 320 400 480 560 640 t (s)

Oxide thickness (d_{ox}) as function of time calculated from V_{OC} trace

OCP in Oxidizing Environment

Oxide thickness (d_{ox}) as function of time

H.F. Okorn-Schmidt, 10/26/2000

ERC Tele Seminar

Correlation between the time evolution of the V_{OC} and the contact angle of a p-type Si wafer in 0.5 % HF (SPM oxide)

H.F. Okorn-Schmidt, 10/26/2000

p-Polarized FTIR spectra (SiH_x) as a function of the etching time in a 0.1% HF solution and correlation to the V_{OC}

Johnson–Mehl: $X = 1 - \exp[-(kt)^n]$

H.F. Okorn-Schmidt, 10/26/2000

 V_{OC} traces as function of the HF concentration (in w-%) (all measurements with equivalent chemically grown oxides)

H.F. Okorn-Schmidt, 10/26/2000

 V_{OC} traces for p-type Si in 0.5% HF after 10 min DI rinse ('HF after DI rinse') and after HF ('HF after HF')

H.F. Okorn-Schmidt, 10/26/2000

Experiments with DI/O₃

- O_3 concentrations tested (= in-tank concentrations):
 - ~1.3, ~4, ~5.3 and ~10.3 ppm
 - continuous overflow/rinse-tank
- Si substrates:
 - (100), 125 mm, 11-16 Ω cm
 - (111), 125 mm, 30-100 Ω cm
- Analytical techniques:
 - Oxidation-OCP: relative oxidation rates
 - EDP-OCP (0.25w% HF): relative/qualitative t_{chemox} , relative interface etching kinetics
 - Ellipsometry and AFM: quantitative t_{chemox} , surface morphology (RMS roughness)

Chemical Oxide Growth and Etching

 V_{OC} traces for Si (100) and (111)

 O_3 concentration: ~ 1.3 ppm

HF concentration: 0.25 w%, std. light

- faster initial oxidation rate on (111)
 (equivalent to gas-phase*)
 similar t_{chemox} after about 8 to 10 min
- *A. Kurokawa et al., Mat. Res. Soc. Proc. Vol. 513 (1998) p. 37

- similar t_{chemox}
- maybe less uniform etching of oxide
- significant slower H-passivation kinetics on (111)

Chemical Oxide Growth and Etching

 V_{OC} traces for Si (100)

 O_3 concentration: ~ 1.3 ppm

HF concentration: 0.25 w%, std. light

relative t_{chemox} can be visualized

EDP-OCP in HF

 V_{OC} traces for Si (100) as function of the O₃ concentration

with increasing O_3 concentration:

- significant increase of the initial oxidation rate *
- significant increase in the final $t_{chemox} **$

* F. De Smedt et al., UCPSS 1998 ** S.L. Nelson et al. UCPSS 1996

H.F. Okorn-Schmidt, 10/26/2000

EDP-OCP in HF

 V_{OC} traces for SiO₂ etching on Si (100) as function of the O₃ concentration

Slope of the *interface etching-V_{OC}* becomes more (111) like with higher O_3 concentration: <u>correlates to increasing RMS roughness</u> *

* Much disussed @ UCPSS 1998

ERC Tele Seminar

AFM details "during" interface layer etching ~ 1.2 ppm O_3 ~ 10.3 ppm O_3

EDP-OCP of Thermal Oxides

Typical change of the V_{OC} with time while slowly removing about 1.2 nm nitrided oxide from a Si (100) surface in HF (0.5 w%)

- Due to the sensitivity of the technique the reproducibility is strongly dependent on the uniformity/equivalency of the samples

H.F. Okorn-Schmidt, 10/26/2000

EDP-OCP Measurements

- Electrochemical Depth-Profiling Open Circuit Potential Measurements:
 - following the V_{OC} (Open Circuit Potential, OCP) of a semiconductor sample during the removal of a dielectric layer on it's surface as a function of time
- Applicable to stacks of dielectric layers:
 - each dielectric material has a specific surface charge (potential) in a given chemical solution
 - V_{OC} adjust when new surface is exposed (change in capacitance)
- Valuable tool for fast screening of:
 - interface properties
 - interface mixing
 - film homogeneity

- ...

Example of EDP-OCP Characterization of Dielectric Stacks

 V_{OC} depth profile for a ~ 4 nm ZrO₂ film deposited on thin thermally grown SiO₂

I: Etching of ZrO₂

II: Initial breakthrough to SiO_2 , majority of surface still ZrO_2

III: Adjustment of surface potential to new majority species $Si-(OH)_x$

IV: Etching of SiO₂

V: Initial breakthrough to Si

VI: H-passivation reaction becomes dominating

EDP-OCP of Al₂O₃

- On HF-last: uniform deposition of Al_2O_3 without interface SiO_2 formation
- On thermal oxide: sharp interface with thermal SiO₂
 - Al₂O₃ etches significantly faster than thermal SiO₂

Al₂O₃ on bare Si (after HF last): HRTEM images

- Sharp interface
- Uniform film
- No evidence for interfacial SiO₂ during deposition

High Resoluton Depth Profiling of Aluminum by Nuclear (Resonance) Reaction Analysis

> ²⁷Al(p,γ)²⁸Si nuclear resonance (reaction) at 404.9 keV **E. Gusev, et al., APL 2000**

* high depth resolution
* uniform Al₂O₃ films
* sharp interfaces

EDP-OCP of ZrO₂

 ZrO_2 : ~ 4 nm (ALCVD), as deposited

Interface: HF-last (dotted), 1.5 nm SiO₂ (solid)

 V_{OC} : in 0.5 w% HF, p-Si(100)

- On HF-last: non-uniform deposition of ZrO_2 with very fast "break-through" of HF to the substrate
- On thermal oxide: sharp interface with thermal SiO₂

- as dep. ZrO_2 etches at similar rate than thermal SiO_2

 ZrO_2 : ~ 4 nm (ALCVD), as deposited Interface: HF-last (dotted), 1.5 nm SiO₂ (solid) V_{OC} : in 0.5 w% HF, p-Si(100)

H.F. Okorn-Schmidt, 10/26/2000

ERC Tele Seminar

ZrO₂ on "HF last"/Si: MEIS depth profiling results

* nucleation problem of AL-CVD ZrO_2 of "HF last" Si * ZrO_2 on thin SiO₂ is OK

ERC Tele Seminar

OCP in Aqueous NH₃

 V_{OC} traces for the dissolution of SiO₂ (chemically grown) in 'NH₄OH' (~1.4M) as function of temperature

H.F. Okorn-Schmidt, 10/26/2000

OCP in HF after Aqueous NH₃

 V_{OC} traces of p-type Si being immersed into 0.25 % HF after treatment in aqueous ammonia

H.F. Okorn-Schmidt, 10/26/2000

OCP in SC1

 V_{OC} traces for a p-type substrate immersed in hydrophobic state into SC1 @ different temperatures

H.F. Okorn-Schmidt, 10/26/2000

OCP in SC1

No influence of megasonic agitation on the SC1 oxidation

H.F. Okorn-Schmidt, 10/26/2000

OCP in SC1 / p-type Si

OCP of p-type Si in SC1 as function of the H_2O_2 concentration (0.25/x/5 =NH₄OH/H₂O₂/H₂O at room temperature)

OCP in HF after SC1 / p-type Si

OCP of p-type Si in 0.2% HF after SC1 with variable H_2O_2 concentration U_{VBV} (0.25/x/5 = $NH_4OH/H_2O_2/H_2O$ at room temperature U_0

OCP in SC1 / n-type Si

OCP of n-type Si in SC1 as function of the H_2O_2 concentration (0.25/x/5 =NH₄OH/H₂O₂/H₂O at room temperature

OCP in HF after SC1 / n-type Si

Summary 1/2

- V_{OC} measurements enable the *real time* and *in-situ* observation of semiconductor cleaning and etching processes:
 - ideal for the determination of oxidation/etching kinetics
 - first visualization of 2-step HF etching process
 - faster initial oxidation rate of Si(111) compared to Si(100)
 - slower H-passivation kinetics for Si(111)compared to Si(100)
 - qualitative estimate of resulting surface roughness possible (!)
 - determination of oxide thickness during growth
- References:
 - Review of OCP work until 1997:
 - H.F. Okorn-Schmidt, IBM J. Res. Develop. 43, 354 (1999)
 - DI/O3 study:
 - H.F. Okorn-Schmidt et al., UCPSS 2000, to be published in the conference proceedings (Solid State Phenomena)

Summary 2/2

- V_{OC} measurements enable the fast screening of dielectric materials (EDP-OCP, electrochemical depth-profiling Open Circuit Potential measurements)
 - etch rates/ etch behavior
 - interface properties
 - interface mixing
 - film homogeneity
 - ...
- References:
 - High-k stacks:

H.F. Okorn-Schmidt et al., The Electrochem. Soc., Pennington, NJ, Vol. 2000-2, p.505

– Work until 1996:

PhD thesis, University of Technology Graz/Austria (1996, in english)

– Work from 1989 to 1991:

Diploma Thesis, University of Technology Graz/Austria (1991, in german)

Presentation at the NATO Summerschool, 1-13 July, 1991, Erice/Italy

ERC Tele Seminar