Effect Of Organic Contaminants

On

The Quality Of Ultra-Thin Silicon Oxide Films

Niraj Rana Prashant Raghu Dr. Farhang Shadman

Chemical and Environmental Engineering, University of Arizona, Tucson

Presentation Outline

- Significance of Organic Contamination
- Research Objectives
- Experimental Approach
- Results and Discussion
 - I a. BHT interactions at wafer and effect of moisture
 - II Effect on Thin-Gate Oxidation
 - a. Effect of Pre-Oxidation Cleans
 - b. Effect of Organic Concentration
 - c. Effect of Ramp Ambient
- Conclusions and Future work

Ultra-Thin Oxides

Effects at Low Dielectric Thicknesses

Critical Contaminants

Particles

Metals

Substrate Roughness

Organics

Organics and their Consequences

Typical Organics and their End-Effects

Compound Type	Probable Source	Potential Effect
Dibutyl Phthalate, Butyl Hydroxy Toluene, DOP	Polymeric materials, filters, paints, floor tiles	Gate oxide degradation
Amines, Amides	Cleaning solutions, CMP, humidity controllers, epoxies	Affect DUV lithography, increase linewidths
Organophosphates	HEPA/ULPA filters	Counter doping, voltage shifts
Silicones	Sealants, caulks	Hydrophobicity, particle formation
Cresols	Photoresists	Corrosion, hydrophobicity
Hydrocarbons	Polymers, tubes	Negative effect on wet and dry processes

Ref: www.balazs.com

Typical Organics on Wafer Surface

- Butyl Acetate
- Ethylene Glycol
- 2-Ethyl-hexanol

- Caprolactam
- Dodecanoic ester
- Tris (2-chloroethyl) phosphate
- 1-(1-Methylethoxy), 2- propanol
 N-butyl benzene sulfonamide
- 1,6- HexanediolDibutyl Phthalate

Trends :

- Low boiling organics adsorb immediately and decrease with time
- High boiling organics generally increase with time

Reported Literature On Organics

Kasi et al (IBM) : HF last surface prone to HC contamination, Annealing causes SiC formation and dielectric degradation.

Saga and Hattori (Sony) : Q_{bd} improves by O_2 addition. Residual F increases BHT and DBP uptake on HF last.

Guan, Gale and Bennett (Sematech) : C contamination at oxidepoly interface correlates with post-cleaning C on surface.

M.Verghese et al (U of Arizona): H_2O increases IPA uptake on silicon oxide and leads to chemisorption.

Research Objectives

Fundamental study of the fate and the effects of organic contamination

How organics adhere to surface of wafer ?

What happens to them in high temperature processes ?

What are the consequences ?

Model Organics

(IPA)

Used as solvent, drying agent

M.Wt : 60.10

B.P : 83 °C

 μ : 1.84 Debye

Butyl Hydroxy Toluene

(BHT)

An antioxidant outgassing from polymeric materials such as plastic wafer carriers, storage boxes, bottles etc

M.Wt :220.35

B.P : 265.2 °C

μ : 1.48 Debye

Experimental Setup - I

- * All Metal MFCs
- ***** EPSS Tubing, 7 RA
- * No Dead Volumes
- * Research Grade Gases
- ***** Isotopic Labeling Studies

Detection Capabilities

- * Single digit ppt levels !!
- * Numerous dedicated analyzers
- * Surface Analysis such as Auger

Reactor for Kinetic Studies

Experimental Procedure

BHT Desorption Profiles

Effect of Moisture on BHT adsorption

15

Organic Loading on Surface

BHT ppm	H ₂ O ppb	Temp. ⁰ C	# BHT /cm ²	# H ₂ O /cm ²	# BHT per H ₂ O
28	0	43	3.4 E14		
28	32	43	5.0 E14	3.5 E13	2.3
28	0	105	2.5 E14		
28	32	105	3.7 E14	2.5 E13	2.3
28	0	150	2.1E14		
28	32	150	3.0 E14	2.1 E13	2.1

Experimental Setup - II

Experimental Procedure

Time

CO₂ Concentration

Experimental Response

75 ppm IPA challenge, Ramp up to 800 °C at 20 °C/min in N₂

<u>Time (min)</u>

50 ppm IPA Challenge on SC1 last wafers

20

Effect of Cleans and Organic Concentration

Effect of Oxygen during Ramp-Up

Carbon Incorporation in Substrate

Effect on Gate Oxide Integrity

Model for Oxidation/Incorporation of Organics

<u>Species</u>

- **Gas Phase Organic** (C_{org})
 - Adsorbed Organic (R)
- **Oxygen** (O_2)
- Oxidation Product (P)
 - **Incorporated Carbon (I)**

Reactions

Fit of Model to Data

Dimensionless Time

Typical Model Parameters

Process	Parameter	Symbol	N ₂ ambient Ramp	O ₂ ambient Ramp
Adsorption	Rate constant @ 20°C	k _a (cm/min)	5.8E-02	3.7E-03
	Activation energy	E _a (kJ/mol)	18.9	18.9
Desorption	Rate constant @ 20°C	k _d (min ⁻¹)	1.5E-01	1.7E-02
	Activation energy	E _d (kJ/mol)	6.2	6.2
Incorporation	Rate constant @ 700°C	k _{inc} (min ⁻¹)	4.4E-02	1.5E-02
	Activation energy	E _{inc} (kJ/mol)	77.9	77.9
Surface oxidation	Rate constant @ 20°C	k _s (cm/min)		1.2E-14
	Activation energy	E _s (kJ/mol)		88.4

CONCLUSIONS

• Organic contamination affects interfacial and thin film properties in gate oxidation and epitaxial growth.

• Moisture enhances adsorption of polar organics such as BHT, IPA and forms chemisorbed species at high temperatures.

• A novel method is developed to detect the kinetics and mechanism of the removal/retention of trace organic contamination.

• SC1 last (hydrophilic) surface adsorbs greater amounts of IPA compared with HF last (hydrophobic) surface. However, a greater fraction of the adsorbed organic gets incorporated in the hydrophobic surface.

CONCLUSIONS (cont.)

• As IPA concentration increases, carbon incorporation in the substrate increases.

• Oxygen in ramp-up decreases the amount of carbon incorporation and the resulting defects; however, it appears to cause other defects, possibly due to immobilization of certain inorganic impurities.

• A model is developed and validated to simulate the simultaneous removal and incorporation of organic impurities during desorption or thermal oxidation.

Future Work

Study other factors in oxidation

Complete experiments with BHT

Investigate effects of DOP

Continue refining the models

Organics on promising Alternate Gate Dielectrics