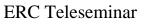
Semiconductor Related Programs at NIST

J. V. Martinez de Pinillos, Ph.D. Senior Scientist Office of Microelectronics Programs

National Institute of Standards and Technology

Technology


Measurements & Standards

- NIST strengthens the U.S. economy
- and improves the quality of life by
- working with industry to develop and
- apply technology, measurements, and

standards. NIST Assets Include:

- National measurement standards
- 3,200 employees
- \$720 million annual budget
- 1,200 industrial partners
- 2,000 field agents
- 1,600 guest researchers
- \$1.6 billion R&D partnerships with industry
- Baldrige Quality Award

12/20/2001

Best Practices

Funding

R&C

Quality

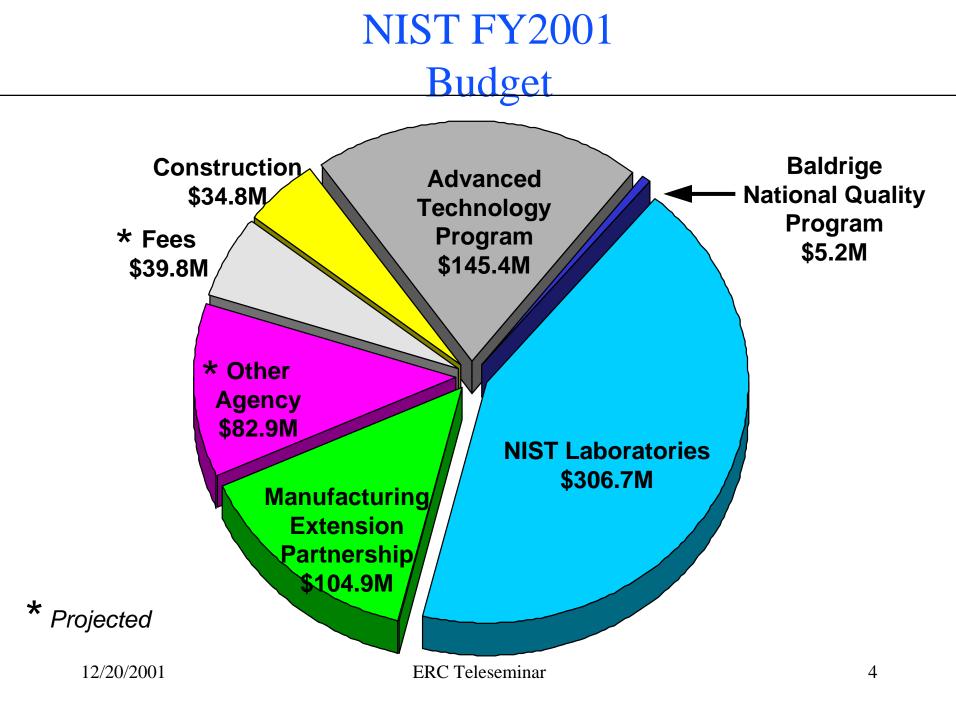
NIST Major Programs

ERC Telesemina

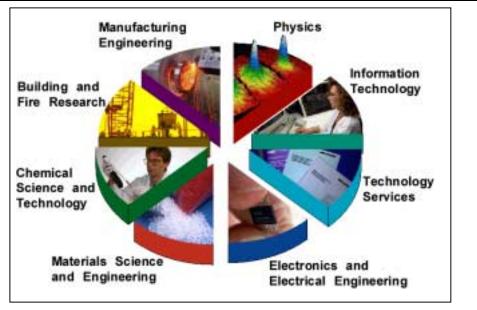
NIST Laboratories

Nation's ultimate reference point for measurements and standards to support industry, science, health care, safety, defense.

Advanced Technology Program


R&D partnerships with private sector to develop broadly beneficial new technologies.

Baldrige National Quality Program


Annual Baldrige awards in manufacturing, service, small business, education, and health care promote business excellence.

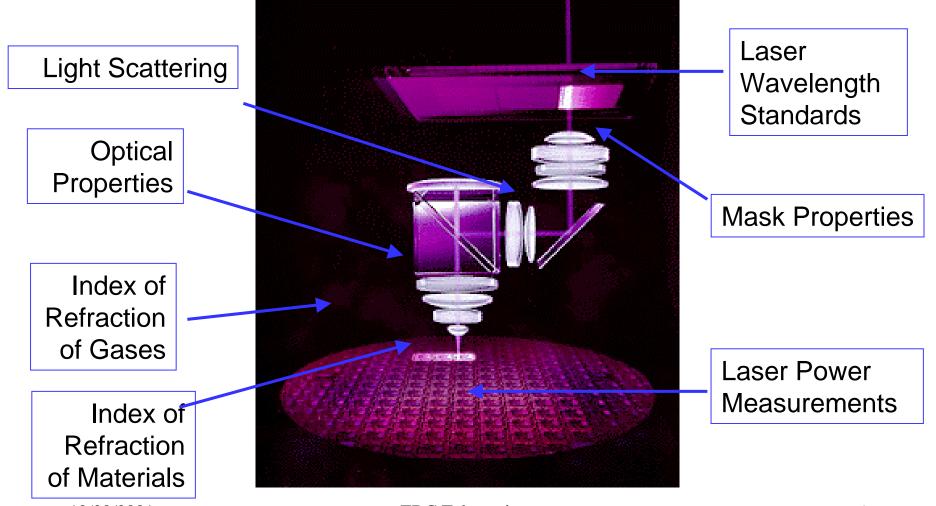
Manufacturing Extension Partnership

Nationwide network of extension centers assisting the Nation's 385,000 smaller manufacturers in all 50 states and Puerto Rico.

NIST Laboratories

- Measurements and standards are critical enablers of the technology infrastructure
- Serve the American people through support of all major economic and scientific activities including:

• Health care


• Standards for clinical tests, radiation diagnostics and treatment, many others.

Manufacturing

- Semiconductors, automotive, discrete parts, many others.
- Dimensional standards, chemical and physical properties data, many others.
- Information technology & telecommunications
 - Standards and tests for computer security, interoperability, software performance, communications infrastructure, many others
 12/20/2001 ERC Teleseminar

NIST Measurements & Standards for Manufacturing

NIST support for the entire lithography process to manufacture microelectronic devices

12/20/2001

ERC Teleseminar

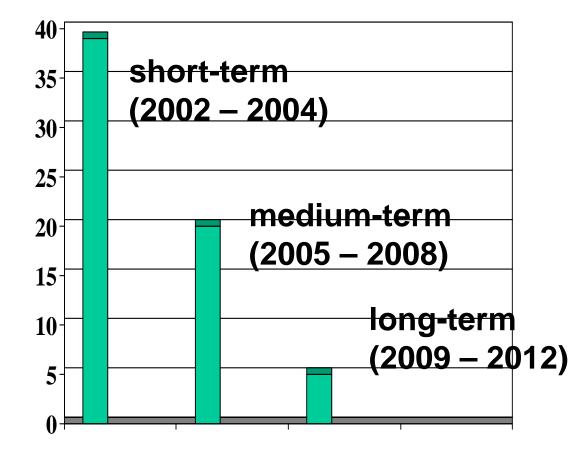
Outline

- Brief Introduction to NIST
- Areas of Work
- Applications
- Summary

Areas of Work

- Lithography Metrology
- Critical Dimension and Overlay Metrology
- Thin Film and Shallow Junction Metrology
- Interconnect and Packaging Metrology
- Wafer Characterization and Process Metrology
- Test Metrology

Areas of Work (2)


- Lithography Metrology
 3 Projects
- Critical Dimension and Overlay Metrology
 6 Projects
- Thin Film and Shallow Junction Metrology
 3 Projects

Areas of Work (3)

- Interconnect and Packaging Metrology
 8 Projects
- Wafer Characterization and Process Metrology
 - □ 10 Projects
- Test Metrology
 2 Projects

Time Base of Programs

Applications

Intrinsic Birefringence of CaF₂

Birefringence in Cubic Crystals

I. Stress-Induced Birefringence

grown-in or externally applied (mounts, gravity, etc.)

- variable magnitude and orientation (sample-to-sample and within sample)
- weak dispersion visible-UV (NIST-SEMATECH 157 Review 11/00)
- can in principle be reduced to any desired value

II. Intrinsic Birefringence

due to symmetry breaking effect of finite q of photon at short λ preliminary measurements in CaF₂ (above 157nm and 193nm target values)

- magnitude and orientation fixed by crystal (no sample dep., uniform)
- strong dispersion $\sim 1/\lambda^2$
- CANNOT be reduced! (inherent property of crystal) (but since fully predictable and symmetric, can be corrected for in principle)

Has been measured in, e.g., Si^1 and $GaAs^2$

¹J. Pastrnak and K. Vedam, Phys. Rev. B **3**, 2567 (1971).

²P.Y. Yu and M. Cardona, Solid State Commun. 9, 1421 (1971).

Implications

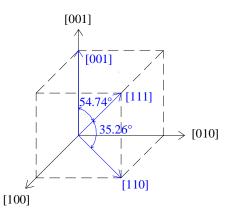
1) Intrinsic birefringence $\Delta n(157 \text{ nm}) \approx 6.5 \times 10^{-7} (6.5 \text{ nm/cm})$

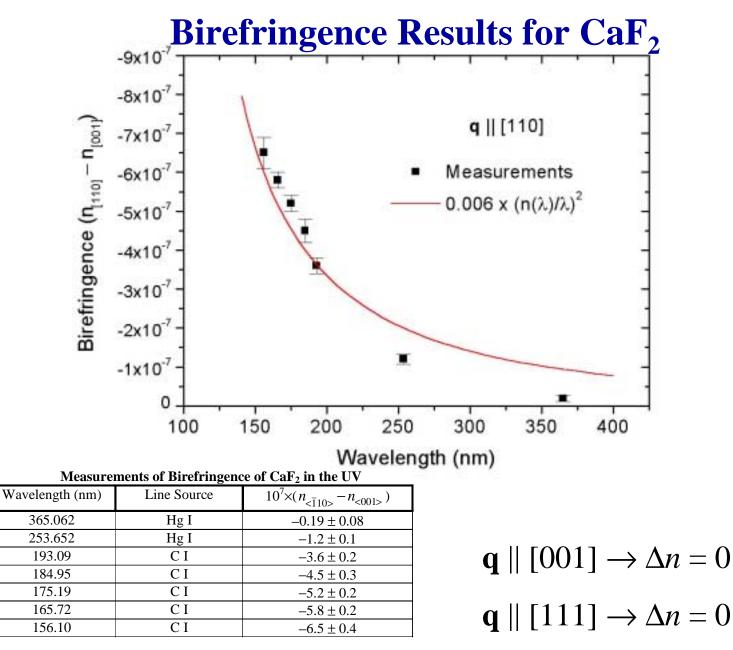
• exceeds birefringence target value for 157 nm lithography (1 nm/cm)

(1st Int. Symp. On 157 nm Lithography, May 2000)

2) Intrinsic birefringence $\Delta n(193 \text{nm}) = 3.6 \times 10^{-7} (3.6 \text{ nm/cm})$

• may exceed birefringence requirements of 193 nm lithography

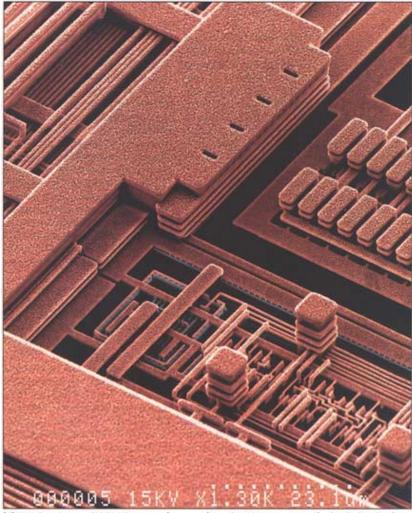

3) $\Delta n = 0$ for [111] direction (lens orientation)

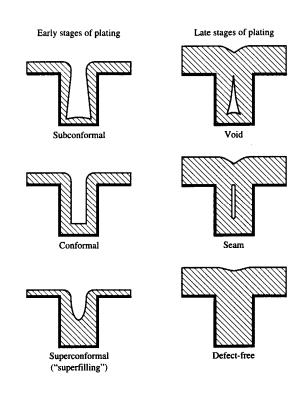

• but [110] only $\theta = \cos^{-1}(2/3)^{1/2} = 35.26^{\circ}$ away

• concern for high NA systems

4) Good news: effect completely predictable and symmetric

- thus can correct for in principle
- 5) Need to know the full angle dependence of the effect
 - fortunately this is completely determined by symmetry alone




12/20/2001

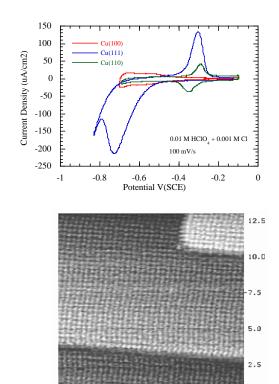
Electroplating of Cu

Electrolytic Copper On-Chip Metallization

[1] IBM Corp.'s new CMOS 7S process for manufacturing ICs uses copper for its six levels of interconnections, and has effective transistor channel-lengths of only 0.12 µm. It is the first commercial fabrication process to use copper wires [see "The Damascus connection," p. 25].

Physical Vapor Deposition (PVD) Chemical Vapor Deposition (CVD) Electrodeposition

"superconformal deposition"

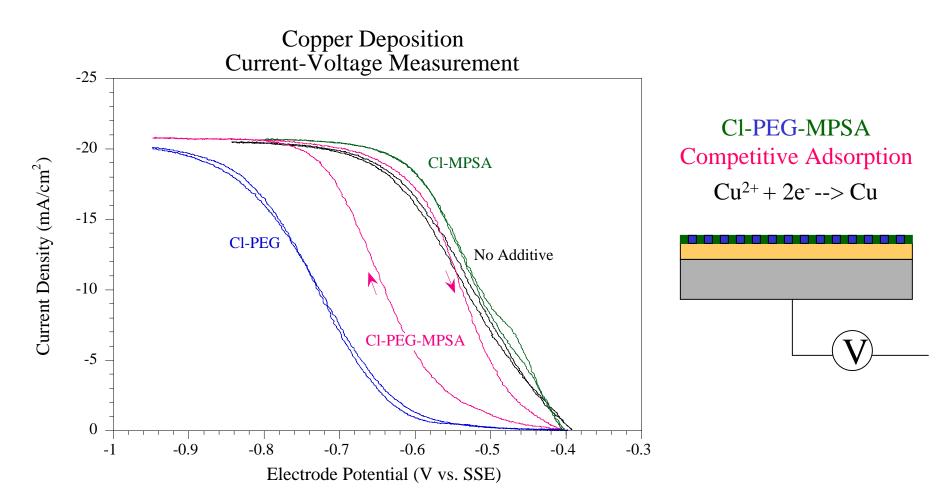

The Problem: Copper Metallization – 5-10 Years Out ITRS --> several interconnect roadblocks at 70 nm node (2008)

Input: 1999 Advanced Metallization Conf. Panos Andricacos (IBM) Richard Alkire (Illinois) Alan West (Columbia) Tom Ritzdorf (Semitool)

Why NIST? Expertise

electrochemistry surface characterization electron microscopy lithography Environment fosters collaboration 3+ years out Broad Application fundamental electrodeposition issues measurement opportunities MEMS/NEMS

Superconformal Deposition extendibility beyond 100 nm (?) lack of fundamental understanding


12.5

10.0

2.5

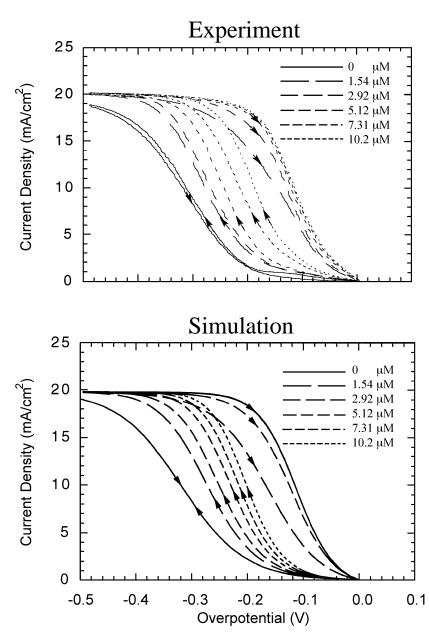
5.0

Cl-PEG-MPSA → Hysteresis in Cu Kinetics

All data needed for the model obtained directly from hysteresis measurements on *planar electrodes*

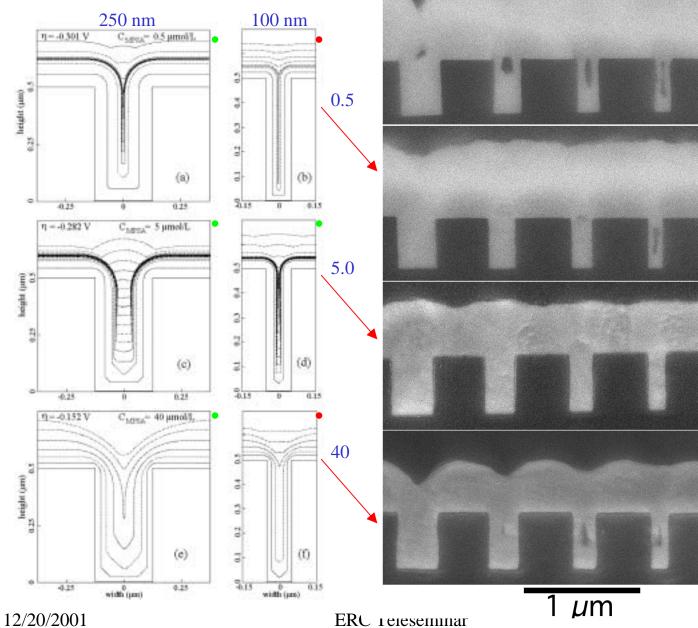
Local time-dependent surface coverage:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = k_{\mathrm{eff}} C_{\mathrm{i}} \left(1 \text{-} \theta\right) + \frac{\mathrm{i}\Omega}{2\mathrm{F}} \kappa \theta$$


 $\kappa = 0$ on flat electrodes,

$$\frac{d\theta}{dt} = \mathbf{k_{eff}} \mathbf{C}_{i} \left(1 - \theta\right) = \frac{\mathbf{D}_{MPSA} \left(\mathbf{C}_{MPSA} - \mathbf{C}_{i}\right)}{\Gamma \quad \delta}$$

 $D_{MPSA} = MPSA$ diffusion coefficient $C_{MPSA} = MPSA$ bulk concentration $\Gamma = maximum$ MPSA coverage $\delta = diffusion$ layer thickness


Electrochemical kinetics for Cu deposition:

$$i(\theta) = \frac{i_{o}(\theta)}{i_{L}} \left(1 - \frac{i(\theta)}{i_{L}}\right) exp\left(\frac{-\alpha(\theta)F}{RT}\eta\right)$$

ERC Teleseminar

Simulation: MPSA Concentration

0.0 µmol/L MPSA

0.5 μmol/L MPSA Low θ Insufficient Acceleration

5.0 μmol/L MPSA Optimum θ Superconformal Growth

40 µmol/L MPSA Uniform Saturation Conformal Growth

22

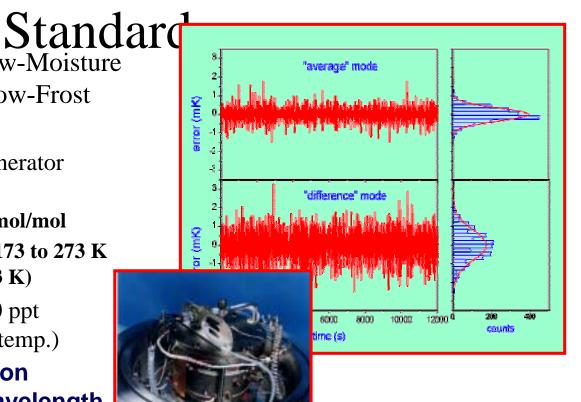
Accomplishments/Impact

Developed a cross-laboratory program on measurements and modeling for superconformal copper deposition (MSEL, EEEL, CSTL)

- developed the first non-proprietary bath that yields superfill down to dimensions of 60 nm and aspect ratios of 3:1
- demonstrated that inhibition alone is *not* sufficient to ensure superfill in direct contradiction to current thinking and models

New time saving measurement, on *planar substrates*, for determining superfill efficacy

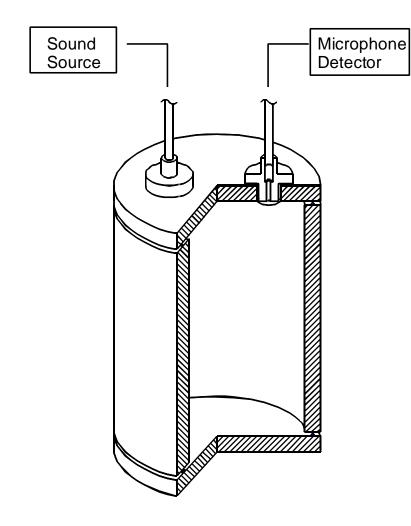
- demonstrated one-to-one correlation between I-V hysteresis, resistance drop (recrystallization rate) and superfill efficacy of electrolytes
- incorporated into control software by ECI Technology, a leading supplier of analytical plating and processing tools, to complement their CVS (cyclic voltammetric stripping) quality control technology.

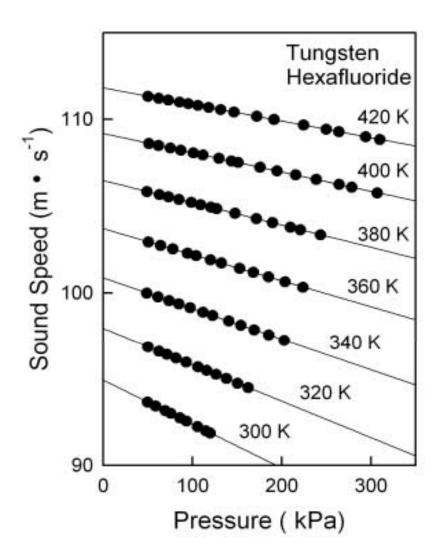

Theory predicts processing windows for superconformal deposition

- alternative to the transport-limited inhibition model
- provide the theoretical underpinning for filling nanometer scale features

Moisture Calibration

Low Concentration Humidity


- Developed Standards for Low-Moisture Concentrations in Gases - Low-Frost Point Generator (LFPG)
 - High Precision Moisture Generator
 - Humidity levels: 5 nmol/mol to ~ 5,000 µmol/mol
 - Operating temperature: 173 to 273 K (±2.5 mK stability at 173 K)
 - Planned improvements 200 ppt (153K or -120° C operating temp.)
 - Calibrated laser absorption hygrometer based on Wavelength Modulation Spectroscopy (WMS) between 5 and 2500 nmol/mol


 Incorporated WMS system as a check standard into the LFPG system as a null detector between LFPG and other humidity generators, e.g., permeation tube generators

12/20/2001

Thermodynamic Properties of Reactive Gases

- Measurements of the speed of sound in reactive gases yield values for thermodynamic properties of the gases.
- These properties had only been estimated in the past due to the difficulties associated with making the measurements directly.

allene	C_3H_4	phosgene	COCl ₂	
arsenic trifluoride	AsF ₃	phosphorous trifluoride	PF ₃	
arsine	AsH ₃	phosphorous pentafluoride	PF ₅	
trimethyl arsine	As(CH ₃) ₃	phosphine	PH_3	
diborane	B ₂ H ₆	sulfur dioxide	SO ₂	RED - measurements
pentaborane	B_5H_9	stibine	SbH ₃	completed
boron trichloride	BCl ₃	silane	SiH ₄	
bromine	Br ₂	disilane	Si ₂ H ₆	GREEN - Identified by
carbon monoxide	СО	silicon tetrachloride	SiCl ₄	industry as a priority
chlorine	Cl ₂	silicon tetrafluoride	SiF ₄	for FY02
chlorine trifluoride	CIF ₃	titanium tetrachloride	TiCl ₄	
ethylene oxide	C ₂ H ₄ O	tungsten hexafluoride	WF ₆	BLACK - Identified as
hydrogen bromide	HBr	uranium hexafluoride	UF ₆	next priority level
hydrogen chloride	HCI	vinyl bromide	C ₂ H ₃ Br	
hydrogen fluoride	HF	vinyl fluoride	C ₂ H ₃ F	
hydrogen sulfide	H ₂ S	vinyl chloride	C ₂ H ₃ Cl	
molybdenum hexafluoride	MoF ₆	trimethyl gallium	Ga(CH ₃) ₃	
nitric oxide	NO	triethyl gallium	Ga(C ₂ H ₅) ₃	
nitrous oxide	NO ₂	trimethyl indium	In(CH ₃) ₃	
nitrogen trifluoride	NF ₃			

Summary

- NIST has an extensive set of programs in support of the semiconductor industry
- These programs address issues across all the important technological areas needed by the industry
- NIST collaborates intensely with ISMT, companies, and universities
- More information can be obtained by calling us (301-975-4400) or going to www.nist.gov or www.eeel.nist.gov/omp