Surface Modification for Selective Atomic Layer Deposition of High-k Dielectric Materials

Collin Mui and Stacey F. Bent Deparment of Chemical Engineering

Charles B. Musgrave Departments of Chemical Engineering and Materials Science and Engineering

Stanford University, Stanford CA 94305-5025

1. Moore's Law and Transistor Scaling

transistors

Moore's Law: The number of transistors in integrated circuits

doubles every 18 months.

Transistor Scaling: Decrease dimensions to maintain constant electric field in the device, including the gate oxide thickness.

2. The Need for High- κ Dielectric Materials

Leakage current through electron tunneling increases

exponentially when the dielectric film thickness is decreased.

Replacing SiO₂ with high- κ dielectric materials allows thicker gate dielectrics and hence reduces leakage currents.

Dielectric Materials		κ
silicon oxide	SiO ₂	3.5
silicon nitride	Si ₃ N ₄	7
aluminum oxide	Al ₂ O ₃	9
hafnium oxide	HfO ₂	30 - 40
zirconium oxide	ZrO ₂	25

Capacitance
$$\propto \frac{\kappa}{t}$$

- How to deposit high- κ materials?
- How to deposit high-κ materials in an environmentally benign manner?

3. Atomic Layer Deposition (ALD)

- ALD occurs through a binary sequence of self-limiting surface reaction steps.
- Each step deposits an atomic layer of thin film material.

Advantages of ALD

- Accurate and simple thickness control
- Excellent conformality and reproducibility
- High quality materials
- Possibility for interface modification

Applications of ALD

- High- κ dielectrics for gate stacks
- Metallic lines for interconnects
- Diffusion barriers

4. Examples of ALD Surface Chemistry

5. Environmentally Benign Selective ALD

Courtesy: Dr. Muscat

6. Process Flow for Selective ALD (con't)

Courtesy: Dr. Muscat

7. Selective ALD of High- κ Dielectric

8. Combination of Experiment and Theory

9. Surface Modification for Selective ALD

10. Strategies for Protecting SiO₂

Formation of self-assembled monolayers on SiO₂ in vacuum?

11. Reactivity of N Lone Pair on Si(100)

Absorbance

12. Chemistry of Amines on Si(100)

Trimethylamine

No N-H bonds, N-CH₃ cleavage unfavorable.

Molecular chemisorption through lone pair.

Dimethylamine

Similar to HMDS, has N-H functionality.

N-H dissociation on Si(100).

Methylamine behaves the same.

13. Reaction of Hexamethyldisilazane

Reaction Conditions

- Reaction of H₂O at 300 K generates Si-H and Si-OH surface groups.
- Expose 0.1 mtorr HMDS to Si-OH covered surface at 300 or 440 K for 30 min.
- Record IR spectra at 300 K.

Experimental observations

- Reacts on clean Si(100).
- Reacts with Si-OH even at 300 K.
- Some selectivity for Si-OH over Si-H.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Absorbance

14. Modeling SiO₂ Surface and Si-OH Groups

Example: Surface chemistry for silicon oxide ALD

Attachment chemisty is localized at the surface functional group.

15. Reaction of Alkylchlorosilanes (Theory)

CI substitution reduces activation barriers of surface reactions.

16. Reaction of Alkylchlorosilanes (Experiments)

<u>Alkylchlorosilanes</u>

- Contain Si-Cl functional group.
- Commonly used to form siloxane bonds.
- Forms SAMs on SiO₂ surfaces.

Experimental Results

- TCES spectrum shows loss of Si-OH stretch and growth of C-H stretch.
- CTMS spectrum shows no reaction.

Future Work

- Verify selectivity on Si-H covered surface.
- Try other functional groups (SiCl₂R₂).
- Reactivity toward subsequent steps.

17. Selectivity of Si-OH Over Si-H Surface

Passivation reaction is unfavorable on Si-H terminated surface.

18. Effect of CI Substitution and Selectivity

Extremely high selectivity for Si-OH over Si-H terminated surfaces.

19. Where Can This Go in the Future?

20. Conclusions and Future Work

Conclusions

- Selective ALD is an environmentally benign method to deposit high-κ dielectric materials.
- Hexamethyldisilazane, which contains N-H bonds, reacts on both clean and Si-OH covered Si(100).
- We have shown successful attachment of alkylchlorosilane to surface Si-OH groups.
- DFT calculations show high selectivity of alkylchlorosilane on surface Si-OH over Si-H groups.
- Selective ALD of metal gate on high-κ dielectric in the future!

