Addressing the EHS Issues with Advanced Gate Stack Processes

> Laura Mendicino Motorola Digital DNA™ Laboratories

Overview

- R&D Areas of Focus
- EHS Strategy for R&D Processes
- Process Emissions Characterization
- Examples of CVD Processes Evaluated
- Point of Use Abatement
- Summary

New Materials Everywhere!

New materials & processes are being introduced at an unprecedented rate

мотовоца 🗱 digital dna⁻

Advanced Gate Stack

- Metal oxide gate dielectric (replaces SiO₂)
 - oxides or silicates of Ti, Ta, Sr, Zr, Hf, Al, Y, Sn, La, etc.
- Metal gate electrode (replaces doped polysilicon)
 metals and nitrides of W, Ti, Ta, Mo, Al, Pt, etc.
- CVD process using metal-based precursors

MOTOROLA

EHS Concerns

- Employee exposure
 - chemical handling
 - accidental release/leak
 - chamber/exhaust maintenance
- Impacts to infrastructure

 drain lines, exhaust lines
- Material compatibility

 potential reaction with other components
 materials of construction
- Environmental impact

EHS Strategy

- EHS review required for ALL new materials
- Specific tool, process, tool location, storage location, usage rate
- Specific point of contact
- Ensure compatibility with tool exhaust/drain and sufficient TGM
- EHS considers potential for exposure and associated hazards
- EHS can require tool/procedure modifications if necessary

EHS Strategy (cont)

- Thorough review of MSDS
 - chemical components adducts, solvents, etc.
 - toxicity, flammability, reactivity (if known)
 - material incompatibilities
 - tool components, co-flow materials, etc.
 - predicted reaction products
 - special handling procedures
 - recommended PPE
 - component for TGM
- · Available supplier data, other data sources
 - TOMES, "like" materials or chemical families, web surfing, etc.

EHS Strategy (cont.)

- Process hazard analysis
 - how material will be used, potential for exposure, etc.
- TGM based on breakdown product(s)
 - often no specific sensor for precursor itself
- Handle with conservative PPE strategy
- Operate under engineering control only
- Monitor process emissions QMS, FTIR, RGA, other
 - reaction by-products & unreacted precursor
 - residual precursor/by-product in chamber
- POU abatement for process emissions where needed
 - highly toxic/flammable material, by-product, or co-flow material (e.g., silane)
- Special chamber maintenance strategy

Monitoring Strategy

- Detect release/leak of hazardous gas/vapors before concentration reaches dangerous level
- For toxic gases, warn at 1/2 TLV (or less), alarm (with automatic source shut down) at TLV
- For flammable gases, warn at 10% of LEL and alarm at 20% LEL
- Can monitor in gas cabinet, valve box, tool (inside enclosure) and area (work, utility, subfab)
- Various types of monitors
 - specific compound
 - general class (flammable, mineral acid, hydride, etc.)
- May monitor breakdown product

intelligence everywhere

Chamber Maintenance Strategy

- Conservative "worst case" procedure for first chamber opening after process has been run
- Clear area around chamber and sub-fab
- Response team on stand by
- Supplemental exhaust (elephant trunk) if available
- Maintenance personnel in full PPE, SCBA
- TGM sensor point in chamber/area if available
- IH personnel and area monitoring
- Monitor emissions during purge
 - ensure no signal for residual precursor, by-product
- Special wipes & spent wipe container if necessary
 - wipes may be analyzed

Regulatory Issues

- TSCA inventory status
 - must be listed or have low volume exemption to be used in manufacturing
 - low volume exemption = only 10,000 kg/yr can be manufactured by all suppliers collectively
 - Listing process is data intensive, lengthy and expensive
 - Promising materials can transfer to manufacturing quickly

EHS Data Collection

- Evaluation CVD precursor candidates:
 - TN [Ti (NO₃)₄]
 - TiCl_4
 - TDMAT
 - Zr t-butoxide and Hf t-butoxide
 - TDEAH
- TiCl₄, TDMAT somewhat characterized, TSCA listed
- Zr t-butoxide and Hf t-butoxide, TDEAH not TSCA listed
- TN newly synthesized, not TSCA listed
 - worked with supplier to determine properties and potential hazards (e.g., upon exposure to air or water, solvents, thermal decomposition)

Process Emissions Characterization

- QMS
 - foreline monitoring, by-product identification
- ITMS
 - post pump, species identification & reaction pathway determination
- FTIR
 - species quantification, high mass precursor identification, abatement efficiency determination

intelligence everywhere"

мотовоца 🛛 🗱 digital dna

Metal-based CVD Precursors and Process By-Products Detected

- Tetranitro titanium (TN)
 - $-NO, NO_2, HNO_3$
- Titanium tetrachloride (TiCl₄)
 HCl
- TDMAT
 - Dimethylamine, ammonia
- Zirconium t-butoxide
 - t-butanol, isobutylene
- Hafnium t-butoxide
 - t-butanol, isobutylene

intelligence kerywhere"

Mass Spectrum of Hf-t-Butoxide Process

intelligence keverywhere"

мотовоца 😽 😽

TiCl₄

- Material itself is corrosive, poisonous
- HCI is hazardous decomposition product (upon exposure to air/water)
 – monitor for HCI as TGM
- In closed CVD system, TiCl₄ and reaction byproducts contained
 - HCI formed from unreacted TiCl₄ in exhaust
 - chamber maintenance becomes an issue

TiCl₄ Chamber Maintenance

- Purged system prior to opening
 no HCl or TiCl₄ signal detected
- HCI detected in "elephant trunk" when chamber first opened
 - indicates residual HCI or TiCl₄ in chamber or lines that reacted upon exposure to air
 - further studies to determine adequate purging

TN $[Ti(NO_3)_2]$

- TN (solid) is corrosive, strong oxidizer, reacts with moisture to form HNO₃ (exothermic)
- NO_x is CVD reaction by-product
- Reacts with IPA to form NO_x
- No degradation with standard o-ring materials

Simultaneous Unutilized Precursor and Reaction Byproduct Monitoring for TN

мотовоца 😽 digital dna

TN Chamber Maintenance

- Purged thoroughly

 no NO_x or TN signal noted
- No issues with chamber opening (no detections)
- No issue with water wipe down (minimal temperature rise)

TDMAT

- Tetrakis (dimethylamino) titanium
- Highly flammable, corrosive,odorous liquid
- Reacts violently with water
 - forms dimethylamine (toxic, extremely flammable) and NH₃ by-product
- Require amine sensor (TGM) in ampoule cabinet, tool, area
- Require point of use abatement for process emissions

FTIR Spectra from TDMAT Process

intelligence everywhere"

TDMAT Chamber Maintenance

- TGM sensor point in chamber detected dimethylamine at 7.5 ppm or greater
 - > than TLV (5 ppm), possibly greater than PEL (10 ppm)
- Special wipes for chamber wet clean
 - cleanroom polypropylene
 - use 100% IPA NO WATER
- Supplemental exhaust to be installed

TDEAH

- Tetrakis dimethylamido Hafnium
- Highly flammable, toxic, corrosive
- Reacts violently with water
 - forms diethylamine (toxic, extremely flammable)
- Require amine sensor (TGM) in ampoule cabinet, tool, area

Mass Spectrum from TDEAH

Mass Spectrum During TDEAH Deposition

Shows diethylamine by-product

Handling Process Emissions

- Point of Use Abatement Device
 - Minimize overall EHS impacts of precursors and by-products
 - Minimize personnel exposure during maintenance
 - Remove unreacted precursor to prevent deposition in exhaust ducts or release to environment
 - Remove/destroy hazardous by-products or co-flow materials

MOTOROL

Hot Bed Dry Scrubber

Thermal Destruction Unit

intelligence everywhere"

Hot Bed Dry Scrubber Performance for TN

мотовоца 🛛 🗱 digital dna 🕯

Hot Bed Dry Scrubber Performance for TiCl₄

Hot Bed Dry Scrubber Performance with Zr t-butoxide

intellic,

dıgıtaldna

Hot Bed Dry Scrubber Performance for Hf t-butoxide

Thermal Destruction Unit Performance for TDMAT

Summary

- EHS Strategy must focus on entire process, not just the new material itself
- Must employ very conservative procedures until process is thoroughly characterized
- Collect as much data as possible in R&D phase
- Work with suppliers to collect additional data as needed to transfer to manufacturing

