Effect of Pad Conditioning Methods on Wafer-Slurry-Pad Coefficient of Friction

Leslie Charns & Ara Philipossian

University of Arizona Department of Chemical & Environmental Engineering Tucson, AZ USA

April 2002

Outline

- Motivation
- Apparatus
- Phase I
 - Procedure
 - Results
- Phase II
 - Procedure
 - Results
- Phase III
 - Procedure
 - Results
- Phase IV
 - Procedure
 - Results
- Future Plans
- Acknowledgements

Motivation

- Characterization, fundamental understanding, and control of the magnitude of shear forces in the pad-slurry-wafer region is an integral element in developing optimal planarization processes
- Adoption of improved pad conditioning schemes will be required to impart desired shear forces on the wafer during CMP and modulate pad life

Apparatus

Parameter	Scaling Factor	Speedfam-IPEC 472	Rotopol-35
Down Pressure	1	4 psi	4 psi
Platen Speed	Reynolds Number	Relative pad-wafer velocity of 0.5 m per second (~ 30 rpm)	Relative pad-wafer velocity of 0.5 m per second (~ 54 rpm)
Platen Diameter / Wafer Diameter	D _{platen} / D _{wafer}	51 cm / 15 cm	31 cm / <mark>9 cm</mark>
Slurry Flow Rate	Platen Surface Area	125 cc per minute	45 cc per minute

Apparatus

Experimental Procedure

- Pad
 - Rodel IC-1000 or Freudenberg FX-9 polyurethane
- Break-In
 - 100 grit diamond disk
 - 30 min with Fujimi PL-4217 (same dilution as the experiment) at 30 rpm disk speed and 30 per min sweep frequency
- Polisher Settings
 - 80 rpm platen speed... 0.62 m/s
 - 3 PSI wafer down force
- Wafers
 - Bare Silicon
- Slurry Injector position

- Center of pad

Experimental Procedure - Phase I What is the effect of conditioner kinematics and diamond grit size on COF?

- Phase I
 - Rodel IC-1000 pad
 - Initial pad conditioning and break-in
 - Slurry ... Fujimi PL-4217 (fumed silica) at 12.5% solids
 - Polisher conditions:
 - Relative wafer-pad velocity ... 0.62 meters per sec
 - Wafer pressure ... 3 PSI
 - Slurry flow rate ... 35 cc per minute
 - Conditioning parameters:
 - Diamond disk ... 60, 100, & 200 grit (perforated disk)
 - Disk speed ... 30, 50, & 70 rpm
 - Disk sweep frequency ... 10, 20, & 30 oscillations per minute
 - Condition pad ex-situ for 8 minutes and record COF data in-situ for 2 minutes

Results - Phase I

- As a first approximation:
 - No relationship was found between disk sweep frequency and COF
 - No relationship was found between disk rotational speed and COF
- Diamond grit size seems to be a critical parameter and warrants further study

Diamond Particle Size Compared to Characteristics of a Pad

Diamond	Length	
Mesh	(microns)	
400	38.1	
325	43.2	
270	53.3	
230	61.0	
200	68.0	
170	88.9	
140	104.1	
120	124.5	
100	149.9	
80	177.8	
60	248.9	

- Characteristics of a Pad
 - Pore diameter ~ 50 microns
 - 10 to 30 microns between asperities

SEM Image : Rodel IC-1000 polyurethane unused pad

Pad Degradation from a 100 Grit Diamond Conditioner

Rodel IC-1000 Magnification 500X Freudenberg FX-9 Magnification 1500X

Experimental Procedure - Phase II What are the effect of diamond disk pressure and wafer pressure on COF?

- Phase II
 - Freudenberg FX-9 pad
 - Initial pad conditioning and break-in
 - Slurry ... Fujimi PL-4217 (fumed silica) at 12.5% solids
 - Polisher conditions:
 - Relative wafer-pad velocity ... 0.62 meters per sec
 - Wafer pressure ... 3 & 5 PSI
 - Slurry flow rate ... 35 cc per minute
 - Conditioning parameters:
 - Disk speed ... 50 rpm
 - Disk sweep frequency ... 20 per min
 - Diamond disk ... 60, 100 & 200 grit
 - Conditioning disk down force... 0.5 &1.5 PSI

Results - Phase II

Experimental Procedure - Phase III Is Pad Conditioning a Reversible Process?

- Phase III
 - Freudenberg FX-9 pad
 - Initial pad conditioning and break-in
 - Slurry ... Fujimi PL-4217 (fumed silica) at 12.5% solids
 - Polisher conditions:
 - Relative wafer-pad velocity ... 0.62 meters per sec
 - Wafer pressure ... 3 PSI
 - Slurry flow rate ... 35 cc per minute
 - Experimental Procedure:
 - Condition pad for 8 min and record COF data for 2 min (3 repetitions)
 - Glaze the pad by recording COF data for 3 hours without conditioning
 - Condition pad for 8 min and record COF data for 2 min (4 repetitions)
 - Glaze the pad by recording COF data for 3 hours without conditioning
 - Condition pad for 8 min and record COF data for 2 min (4 repetitions)
 - Compare COF before and after pad glazing

Pad Glazing

- Pad glazing is a common term used when the surface of a pad has lost its original properties, including asperities and pores.
- During polishing, the cavities and pores on the surface of a pad will get filled with slurry.
- Due to the pressure and temperature increase during polishing, the slurry starts to "glaze" the pad, or in other words, precipitate on the pad
- Pad glazing is a method to test the decay of a pad. It determines when a pad starts to decay and the rate of its decay

Results - Phase III

Combined Glaze Runs (3hr-3hr) Between 200 Grit Diamond Conditioning

COF Before and After Pad Glazing Using 200 Grit Diamond

Lubrication in Journal Bearings & the Stribeck Curve

Results - Phase III

Combined Glaze Runs (3hr-3hr-4hr) Between 60 Grit Diamond Conditioning

COF Before and After Pad Glazing Using 60 Grit Diamond

Results - Phase III

Combined Glaze Runs (3hr-3hr) Between 100 Grit Diamond Conditioning

COF Before and After Pad Glazing Using 100 Grit Diamond

- Squares correspond to COF data following the first 3-hr glaze

Experimental Procedure - Phase IV

What is the effect of diamond disk geometry on COF?

- Phase IV
 - Freudenberg FX-9 pad
 - Initial pad conditioning and break-in
 - Slurry ... Fujimi PL-4217 (fumed silica) at 12.5% solids
 - Polisher conditions:
 - Relative wafer-pad velocity ... 0.62 meters per sec
 - Wafer pressure ... 3 PSI
 - Slurry flow rate ... 35 cc per minute
 - Conditioning parameters:
 - Disk speed ... 50 rpm
 - Disk sweep frequency ... 20 per min
 - Diamond disk ... 325 grit ring shape geometry, 100 grit perforated
 - Condition pad ex-situ for 8 minutes and record COF data in-situ for 2 minutes

 Pressure measurements of diamond disk using Tekscan Pressure mapping sensor

Results - Phase II

Tekscan Pressure Mapping Sensor

Pressure Mapping Procedures

Experimental Procedure

- Prior to analysis:
 - Sensor is installed & calibrated using the Tekscan Pressure Bladder System
 - Sensor is aligned & attached between platen and pad, directly under the pad conditioner (No. 1 & 2)
 - Contact is made between wafer sensor system
 - Platen is stationary during analysis
- Experimental Phases
 - Freudenberg (flat) using diluted Fujimi slurry PL-4217
 - applied pressure using 3 different springs
 - Pseudo Dynamic conditions (No. 1)
- During analysis:
 - Pressure data acquisition at pre-set applied disk pressure is taken under static conditions for the 325 grit ring and a 100 grit perforated disk
 - Diamond disk rotation is set at 30 rpm and sweep frequency is set at 30 osc/min (pseudo-dynamic)
 - Data acquisition is taken 10 frames per sec for 1 minute

Psuedo-Dynamic Animation

325 grit diamond conditioner - ring shaped

100 grit diamond conditioner - perforated

Future Plans

- Explain the "U-Shaped" COF vs diamond grit size curve using stylus profilometry and SEM micrographs of the pad and the diamonds before and after conditioning
- Continue investigating the effect of finer diamond sizes on COF
- Continue investigating the effect of various diamond disk shapes on COF
 - Perforated
 - Ring-shaped
 - Flat
- Quantify the extent of "disk plowing" as a function of various diamond and kinematic conditions
- Determine if there is a correlation between COF and:
 - Oxide removal rate
 - Pad life
 - Diamond life
- Develop comprehensive model based on tribological arguments

