Copper CVD: Applications and Potential Recycle

John Norman

Ref:\p:\johnn\asa98.ppt Slide: 1 Prepared by: BLH 7/31/2002

PRESENTATION OUTLINE

- ▲ Applications for copper CVD.
- ▲ Introduction to precursor chemistry.
- ▲ Chemical delivery, processing issues.
- ▲ Abatement versus recycle of CVD effluent.
- ▲ Summary.

Applications for copper CVD

- Provide ultra-thin conformal copper seed layers for electroplated copper.
- ▲ Enable new copper CVD Superfill.
- All 'dry' CVD copper full-fill capability vs. electroplated copper
 - Avoids the use of stand alone e-plating tool.
 - All metal film processing from diffusion barrier to copper seed to full-fill achieved on one tool without vacuum break.

Copper CVD superfill using CupraSelect

- ▲ Use of catalytic iodine surfactant. E.S. Hwang, J. Lee, <u>Chem. Mater</u>. 2000, 12, 2076- 2081.
- ▲ Copper fills from the bottom of the feature first.

CUPRA SELECT®

- ▲ Stable yellow liquid Cu(hfac)(tmvs), premier copper precursor.
- ▲ Vapor pressure 1 Torr @ 60°C.
- ▲ Provides 99.99% copper , 1.85 µohm cm¹, 5000 A/min.
- ▲ Conformality > 90%

¹J. Norman et al Thin Solid Films 262 (1995) 46-51

CVD COPPER FILM GROWTH

Metallization by disproportionation

METALLIZATION CHEMISTRY

- Selective deposition onto conductors due to key electron transfer step.
- Superior metallization process by the use of additives.
 - tmvs for stable precursor delivery.
 - hfac and water (separately or as HDH) for enhanced metallization.
 - water addition alone promotes adhesion.

EVOLUTION OF CUPRA SELECT PROCESSING WITH ADDITIVES

▲ Enhanced thermal stability during DLI evaporation. Cu¹(hfac)(tmvs) + tmvs → Cu[°] T. Omstead (Sandia)

▲ Enhanced deposition rate for copper.
Cu¹(hfac)(tmvs) + H₂O → Cu[°]
A. V. Gelatos et al Appl Phys Lett., 63 (20) (1993) 2842.

▲ Enhanced deposition rate, uniformity and reflectivity. Cu¹(hfac)(tmvs) + Hhfac → Cu[°] J. Norman et al Conference proceedings ULSI-IX 1994 MRS

COMBINING THE ACCELERANT ADDITIVES Hhfac AND WATER INTO ONE COMPOUND: Hhfac DIHYDRATE

- Release of Hhfac and H₂O occur under CVD conditions, assuming adequate residence times for dissociation in the CVD chamber.
- Cu(hfac)(tmvs)/hydrate blend can be stabilized by tmvs addition.
- ▲ Improved adhesion of copper to some TiN, but additional water needed for Ta and TaN.

SUMMARY OF ADDITIVE TRENDS

	Adhesion	Uniformity	Dep. Rate	Resistance	Reflectivity	DLI Performance
tmvs	0	0	(-)1	(-)2	(-) ³	+
Hhfac	0	+	+	0	+	(-)
H_2O	+	(+)	+	(-)4		(-)
HDH	(+) ⁵	+	+	0	+	(-)

Legend:

- + = improves
- = degrades
- 0 = no effect
- () = lesser effect
- 1) Disproporation suppressed.
- 2) Resistance can appear higher due to film roughness.
- 3) Degraded by higher roughness.
- 4) Excess water yield copper oxides.
- 5) Improves adhesion on some TiN.

Hydrogen as a reducing agent:

2 Cu(hfac)(tmvs)+ H₂= Cu° + 2 Hhfac + 2tmvs Arita et al J. Electrochem. Soc., Vol 142, No9, 3173 (1995)

Compare to disproportionation:
2 Cu(hfac)(tmvs) = Cu° + Cu⁺²(hfac)₂ + 2 tmvs

WAFER METALLIZATION SCENARIO

- ▲ At 2000A/min, 0.25m 6:1 AR
- ▲ On an 8 inch wafer 0.5 microns copper film corresponds to 0.144g copper metal.
- ▲ Assume 30% utilization efficiency of copper precursor entering the reactor.
- 2.5g of CupraSelect will be consumed during the process step, but approx 70% of this remains unchanged as it exits the process chamber as effluent.

ABATEMENT SCENARIOS FOR REACTOR EFFLUENT

▲ Destructive capture of CVD effluent.

- pyrolysis in a hot-box.
- chemical absorption by a caustic scrubber.
- ultimate disposal of copper waste.
- ▲ Reversible physical entrapment for recycle
 - no copper waste for disposal, environmentally benign.
 - complete recycle for copper containing CVD byproducts.
 - lowered COO to end user.

Destructive abatement

- Precursor vapor contacted with alkaline metal oxides at high temperature to fragment fluorocarbon ligands to give metal fluorides, HF,CHF_x etc.
- Any residual flammable vapors are combusted in burn box to give carbon dioxide, water and HF
- ▲ HF vapors and carbon dioxide need alkaline scrubber for absorbtion
- Copper deposited as waste metal or metal fluoride for disposal.
- ▲ High value-added molecules irreversibly consumed.

Collection of copper metal and $Cu^{+2}(hfac)_2$

▲ Applied Materials US 6099649

Regeneration of Hhfac ligand

▲ Air Products US 6046364

Production of CupraSelect

▲ Regenerated Hhfac recycled back to give fresh precursor. Air Products US 6096913.

ISO 9001 Certified

SUMMARY

- CupraSelect is attractive for commercial implementation of copper CVD for e-plate seed, CVD superfill, all 'dry' full-fill CVD.
 - Adaptable precursor properties
 - Simple thermal CVD process.
 - Excellent film properties.
 - Potential for minimal environmental impact via fluorinated ligand and copper recycle.

