

Developments in the Management of Exhaust in a Fab

W.K. Olander, J. Arnó ATMI December 5, 2002

1

Drivers for Change

Energy consumption in a Fab facility is under scrutiny: Exhaust and make-up air fans consume 7% of the total energy

- Capital cost to add clean room air:\$80-\$100 per cfm
- Estimated cost per exhaust ~\$9-\$10 per cfm
- •Many Fabs are exhaust limited today
- Better handling of fab exhaust can lead to improved contamination and EH&S-related issues

SIA Roadmap

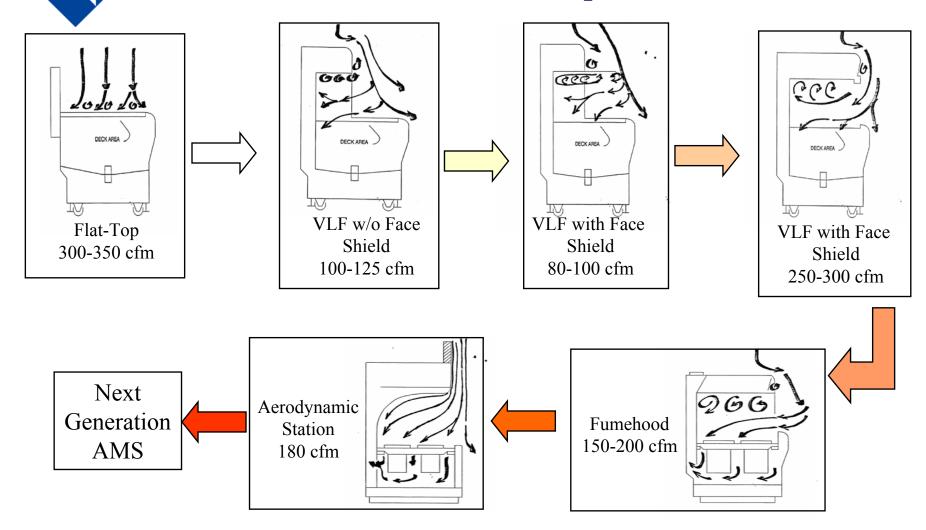
<i>Year</i> Technology Node	1999 180 nm	2000	2001	2002 130 nm	2003	2004	2005 100 nm
ESH	Equipment Design for EH&S						
Energy Consumption: Overall fab equipment kWh/cm ² (kwh/in ²)	0.5 (3.2) – 0.7 (4.5)						0.4 (2.5) - 0.5 (3.2)
Energy Consumption: Fab FacilitykWh/cm ² (kwh/in ²)	0.5 (3.2) – 0.7 (4.5)						0.4 (2.5) - 0.5 (3.2)
300 mm production fab equipment energy consumption	X ⁽¹⁾ 0.5X						

⁽¹⁾ X is based on 200 mm tool energy per wafer required

Source: The Semiconductor Industry Association Roadmap with energy reduction metrics for facility and process equipment

ATMI Material Lifecycle Solutions

Technologies Presented

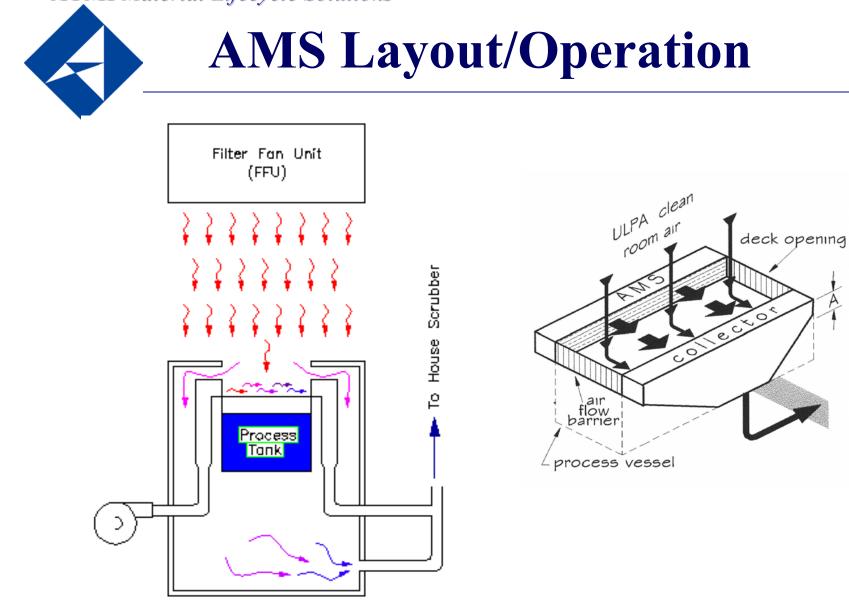

- Wet bench exhaust reduction: introduction of the next generation Air Manager System: Reducing air use while improving chemical capture
- 2. Recirculating of Ion Implant Exhaust: A novel approach to reducing the high exhaust requirements in ion implanters: cost savings and safe operation

1.- Wet bench Exhaust Reduction:

Wet Bench Evolution:

Exhaust Flow Perspective

Challenges of State-of-the-Art


Modern air management systems use push/pull air flow forces to achieve chemical containment

- •Air flow dynamics around wet benches is complexly coupled by any flow variations in its surrounding area
- Even after optimization of air flow balance, air turbulence and fume releases occur upon minor changes in the initial conditions

Novel Approach

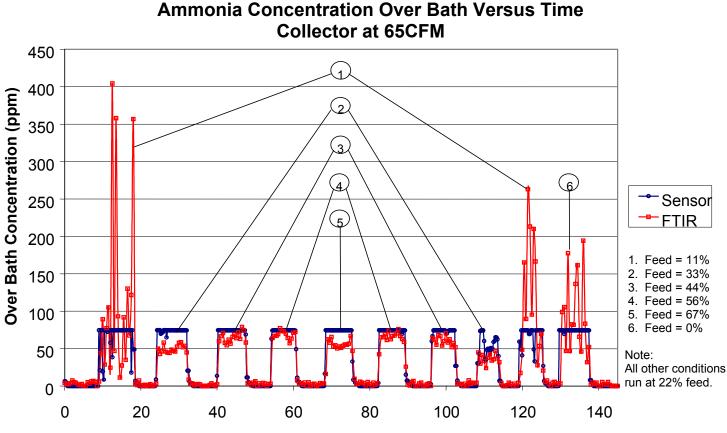
Air Manager System (AMS): Independent air flow control at deck level decoupled from cleanroom air

- Expected Benefits
 - Reduced Energy Requirements
 - Improved Chemical Fume Containment
 - Enhanced Cost of Ownership
 - Safer Working Environment
 - Extended Equipment Life

AMS Development/Optimization

- System Variables:
- Filter box feed rate
- Collection rate
- FFU rate

- Filter box type
- Height above bath


System Measurements:

- Over-bath concentration (Point Sensor, FTIR)
- Exhaust concentration (Point Sensor, FTIR)
- Bath temperature (Thermocouple)
- Air velocity (Hot-wire anemometer)

Example Results:

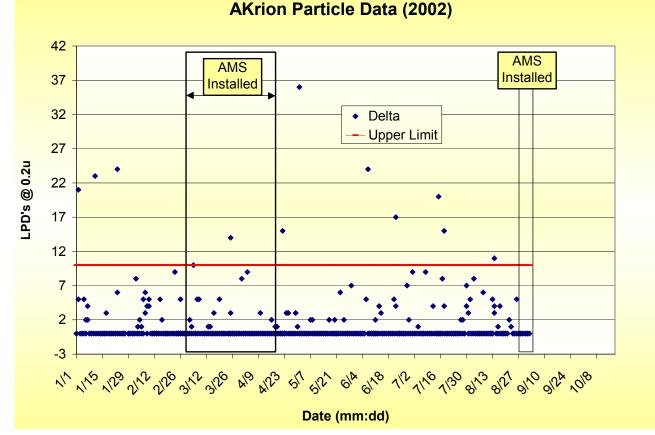
Feed Rate optimization

Elapsed Time (min)

ATMI Material Lifecycle Solutions

Comparison of Filter Box #1 Versus Filter Box #2 Collector at 65CFM FFU at 113CFM (80 ft/min at face)

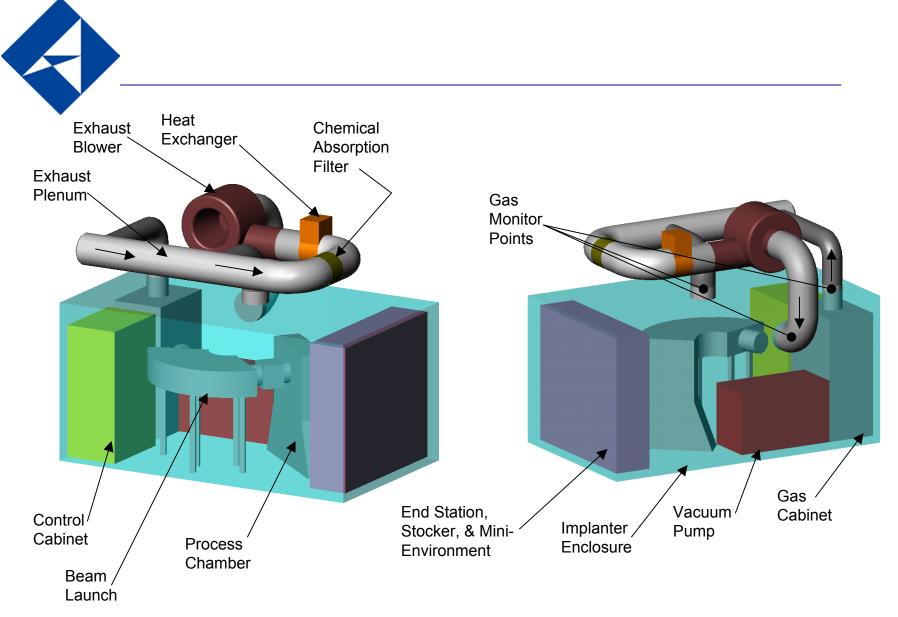
• During recent testing, the AMS was installed into a prototype 300mm wet processing station • The AMS supplied a blanket of filtered air horizontally across the top of the chemical process vessel to an opposing exhaust collector/receiver • The AMS partitions the chemical fumes rising from the vessel, captures them and sweeps them into the exhaust collector located in the plenum



Beta Site Results

- Point-of-use sensors, located in a grid array above the chemical process vessels were used to optimize the AMS flows
- Complete chemical capture was achieved
- Results of this study supported an overall equipment exhaust reduction of 70%
- Based on this study, a next generation AMS system was designed to improve performance and retrofitability

Beta Site Results: Particle Data


Particle data indicates no process variations while the AMS was operating

ATMI Material Lifecycle Solutions **Self-Contained Bench Concept** FFU Air Intake Return Filter Fan Exhaust Unit (FFU) Air Wet Mini **Process Tank** Bench Environment Exhaust w/AMS to Exhaust House Exhaust Chemisorbtion Particle Filter Blower Front View **Rear View**

2.- Ion Implant Exhaust Recirculation

ATMI Material Lifecycle Solutions

