Toward a Molecular-Scale Nanoelectronics

Christopher E. D. Chidsey Stanford University

SAMFET (Schön & Bao, Lucent Bell Labs)

Figure 1 Structure of the investigated molecules and transistors. **a**, Molecular structure of the investigated materials; **b**, SAMFET structure: a highly doped Si-substrate is used as the gate electrode, a thermally grown SiO₂ layer acts as gate insulator, the gold source electrode is deposited by thermal evaporation, the active semiconducting material is a self-assembled monolayer (SAM) of one of the six molecules (**1–6**), and the drain contact is defined by shallow-angle shadow evaporation of gold. The active region of the device is magnified.

Figure 2 Transistor characteristics of a 4,4'-biphenyldithiol (molecule 2) SAMFET at room temperature. The inset shows the transfer characteristics, that is, drain current at $V_{\rm d} = -1$ V as a function of $V_{\rm g}$.

Jan Hendrik Schon, Hong Meng & Zhenan Bao, Nature 413, 713 (2001).

And More!

FIG. 4. Transfer characteristics of an ultrashort channel σ - π SAM FET (nano-FET) at room temperature. Channel length is defined by an al-kanethiol layer (~2 nm).

J. H. Schon & Z. Bao, Appl. Phys. Lett. 80, 332-333 (Jan 14, 2002).

Outline

- •Future of electronics
 - •Molecular Acceptors & Marcus theory
 - •Study tunneling with self-assembled monolayers
 - •Recent data on oligophenylenevinylene bridges
 - •Bridge conformers and electron tunneling

Tunneling Limit to Electronics

•Bohr radius of an "electron" is 0.1 to 1 *nanometers* in insulating media.

•*Nano*electronics is the limit for circuits with electrons as information carriers because electrons will *tunnel* between wires spaced less than a few nm apart.

•Since we are stuck with electron tunneling, we should exploit *differential* electron tunneling in nanoelectronics.

Single Electron Transistor

Exploit differential tunneling to:

- 1. Maximize electrostatic effect of gate
- 2. Minimize gate current

This is a familiar problem:

•Need *high K dielectric* or *ferroelectric* on gate!

How fast could it switch?

- Limit electronic coupling, and thus level broadening, to of order k_BT :
- Tunneling therefore will have a rate of order:
- $2\pi k_B(300K)/h = (25fs)^{-1}$
- This should easily allow of order 1THz gates

Some Challenges in Nanoelectronics

Problem	Possible Solution
nanometer control	molecular devices (molecular chemistry)
two electrodes	crossed nanowires (solid-state chemistry)
nanometer circuits	directed assembly of nanowires (colloidal and solid-state chem)
three electrodes	broken crossed nanowires (electrochemistry)
more than 2N wires	breaks and vias (electrochemistry)

Outline

- •Future of electronics
- •Molecular Acceptors & Marcus theory
 - •Study tunneling with self-assembled monolayers
 - •Recent data on oligophenylenevinylene bridges
 - •Bridge conformers and electron tunneling

Molecular Acceptors & Marcus Theory

- molecular acceptors
- localized charge \rightarrow

• reorganization \rightarrow

- localized electronic charge
 - structural reorganization (polaron formation)
- activation barrier + limitation on barrier crossing rate

Outline

- •Future of electronics
- •Molecular Acceptors & Marcus theory
- •Study tunneling with self-assembled monolayers
 - •Recent data on oligophenylenevinylene bridges
 - •Bridge conformers and electron tunneling

Cyclic Voltammetry of Fc

•Nearly ideal peak shape (90mV fwhm) indicates isolated, independent acceptors

- •0.8eV above OPV HOMO
- •1.6eV below OPV LUMO

Chronoamperometric method: (usually limited to ~10⁴ s⁻¹)

Use microelectrode to speed up (Dave Robinson PhD thesis)

Planar microelectrode geometry

Electron-Transfer Rate vs. Energy and Alkyl-Chain Length

A Potentiometric Method: Indirect Laser Induce Temperature Jump

Chidsey, "Toward a Molecular Scale Nanoelectronics", ERCEBSM Teleconference, January 24, 2002

Outline

- •Future of electronics
- •Molecular Acceptors & Marcus theory
- •Study tunneling with self-assembled monolayers
- •Recent data on oligophenylenevinylene bridges
 - •Bridge conformers and electron tunneling

Data for various bridges

Example of Arrenhius Plot of k⁰

Arrhenius Prefactors of OPVs

Suggestion for Slow Reorganization Dynamics

Expect translational diffusion time of ~10 ps

Outline

- •Future of electronics
- •Molecular Acceptors & Marcus theory
- •Study tunneling with self-assembled monolayers
- •Recent data on oligophenylenevinylene bridges
- •Bridge conformers and electron tunneling

Curious dependence of limiting prefactors on bridge type

