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Major Thrusts of Research at Berkeley

• Integrated model of CMP 
• mechanical elements (abrasive size, shape, 
dist’n, pad characteristics- hardness and 
roughness, pressure, velocity, etc.)

• chemical elements integration 
• validation/software “packaging” for CAD

• AE-based process feedback and optimization
• Consumable/surface design 
• Metrology (scatterometry) for profile development
• Environmental modeling
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Polishing and CMP
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Characteristics of slurry film thickness
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Mechanical and Chemical Material Removal
Effects vs Slurry Film Thickness

Velocity(=slurry film thickness)
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Source: Yongsik Moon and David A. Dornfeld, “Investigation of Material Removal Mechanism and Process
Modeling of Chemical Mechanical Polishing (CMP),” Engineering Systems Research Center (ESRC),
Technical Report 97-11, University of California at Berkeley (September 1997)
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Effect of gap on CMP - material removal
• Material removal per sliding distance

Material removal per sliding distance
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Material removal per sliding distance
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(C=Preston’s coefficient
P = pressure, V=velocity,
h=removed height, s=sliding distant
t= time)
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Scale effects – Abrasives/Pad
• UR100 from Rodel

100µm
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polyester felt
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End fibrils

400µmVertically 
oriented pores
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Idealized CMP

Silicon wafer
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Mechanical Aspects of the Material Removal Mechanism in 
Chemical Mechanical Polishing (CMP)
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CMP Parameters
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CMP Modeling Roadmap 
Objectives from Industrial Viewpoint - VMIC 2001

• Models are not reliable enough to be used as verification 
of process

• Usefulness of modeling is the ability to give feedback for 
“what-if” scenarios (predicting “polishability” of new mask 
designs) in lieu of time-consuming DOE tests

• Models should give some performance prediction for 
realistic, heterogeneous pattern effects

• Models should predict not only wafer scale phenomena 
but also have some capability to capture feature/chip 
scale interaction
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Roadblocks for Modeling

• Multi-scale (wafer-, die-, feature-level) interactions must 
be integrated for global CMP modeling to be useful

• Linkage of models to upstream (deposition, etc.) and 
downstream (lithography,etc.) processes 

• Models need to address defectivity

• New materials, consumables (pad, slurry, etc.) modeling 
and characterization



13 LMA
 Laboratory for Manufacturing Automation, 2001

University of California at Berkeley

Literature Review of Modeling of CMP
MRR
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Past 2-D Material Removal Rate (MRR) Models

•Analytical Model Considering Wafer-Pad Contact Area[2]: 
Zhao’s Equation
MRR= Ke(P0-Pth)2/3V, where Pth a fitting parameter.
Active abrasive number is proportional to contact area. Contact 
area ∝ P0

2/3

Contact Area A

P0

Wafer
P0 V•Experimental Model [1]: Preston’s Equation

MRR= KeP0V + MRR0 where Ke an all-purposed coefficient, 
MRR0 a fitting parameter, P0, Down pressure, and V, the 
relative Velocity. 

Pad

V
Wafer

*All with an all purpose factor Ke to represent the roles and interactions of other
input variables except the down pressure and velocity 

1Preston, 1917, J. of Glass Soc. 
2. Zhao et. al., 1999, Applied Physics
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Motivations for a Comprehensive Material Removal 
Model

• Identify the most important input parameters related to 
Slurry Abrasives, Wafer, and Polishing Pad except the 
down pressure P0 and velocity V

• Investigate the interactions between the input parameters

• Develop material removal rate formulation to consider 
the roles of the input parameters and their interactions 

• Model as a basis for process design and optimization 
(including environmental impacts)
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Sub-Model not Included
in Current Model

Mechanical-Chemical Interaction Model:

Weak Relationship Included in Current Model
Sub-Model
Model Output Inputs and Outputs
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Consumable Parameters including: Slurry Abrasive Concentration, Abrasive Size Distribution, Slurry Oxidizer Type and 
Concentration, PH, Pad Topography and Pad Material (Hardness and Young’s Modulus), Wafer Materials and Process
Parameters including Down Pressure, Relative Velocity, Slurry Temperature and so on. 
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Chemical Aspects of CMP

•Chemical and electrochemical reactions between 
material  (metal, glass) and constituents of the slurry 
(oxidizers, complexing agents, pH) 
–Dissolution and passivation

•Solubility
•Adsorption of dissolved species on the abrasive particles
•Colloidal effects
•Change of mechanical properties by diffusion & reaction 

of surface
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Interactions between Input Variables
Four Interactions: Wafer-Pad Interaction; Pad-Abrasive Interaction; 
Wafer-Slurry Chemical Interaction; Wafer-Abrasive Interaction

Polishing pad

Abrasive particles 
in Fluid (All 
inactive) Pad asperity

Vol
Chemically 
Influenced Wafer  
Surface

Wafer 

Abrasive 
particles on 
Contact 
area with 
number N

Velocity V

Active abrasives
on Contact area

Source:  J. Luo and D. Dornfeld, IEEE Trans: Semiconductor Manufacturing,, 2001
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Framework Connecting Input Parameters with 
Material Removal Rate
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Modeling of Pad and Wafer Interaction

Pad Topography

Wafer-Pad 
Contact under 

Down Pressure P0

R
Area A in 
Contact 
(Micro-

Scale Size)

Contact Pressure 
P ∝ P0 

1/3

Pad Surface : 
• Rough and all asperities are in 

contact with wafer 
Wafer Surface 
• Smooth in comparison with pad 

surface

Pad Material: 
• Young’s Modulus E 
Wafer Material 
• Rigid-body in comparison with pad

Before deformation After deformation

An Asperity with 
spherical tip under Load 
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Modeling of Pad-Abrasive Interactions on the 
Contact Area: Fraction of Active Abrasives 

Stage 1
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Interaction Between Wafer and Abrasive: Material 
VOL Removed by a Single Abrasive

Vol ∝ ∆1a1V∝ F3/2X2
avg-a

∆1

Wafer

Pad

2a1
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F F
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Material Removal Rate as Functions of Down 
Pressure and Abrasive Size Distribution 
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k2 is a function of consumable factors including abrasives and polishing pad but independent of 
slurry chemicals. This agrees well with the model prediction. 
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Abrasive Size Distribution Dependence of MRR:
Particle Size Distribution [1]
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Abrasive Size Distribution Dependence of MRR: 
Experiment Results [1] VS. Model Predictions
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Abrasive Size Distribution Dependence of MRR: 
MRR as a Function of Concentration and Abrasive Size Distribution
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Java Implementation of CMP Optimization 
Software based on the Material Removal Model
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“Design” of consumables - Pad Example

Prototype surface, 20X

Prototype surface, 55X Design software interface for prototype pad surface; geometry
of individual elements, pitch and mechanical properties are 

Variable, courtesy of J. F. Luo, LMA, 2001
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Basic Framework of the CMP Optimization Software
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Preprocessor: Machine Setup
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Preprocessor: Consumable Setup

Slurry Pad
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Preprocessor: Wafer Setup
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Postprocessor: Interface Pressure Distribution
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Postprocessor: Velocity Distribution
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Postprocessor: Down Pressure Dependency of MRR
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Postprocessor: WIWNU: Function of Pressure Distribution, 
Velocity Distribution and Pressure Dependency of MRR



40 LMA
 Laboratory for Manufacturing Automation, 2001

University of California at Berkeley

Postprocessor: WIDNU: Function of Pattern Density and 
Pressure Dependency of MRR
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Conclusions
• A comprehensive model is developed to explain the material 

removal mechanism in CMP

• The roles and interactions of polishing pad, slurry  and wafer are 
being identified using this comprehensive model

• MRR formulations considering the integrated effects of input 
variables are developed and verified

Future Work
• Further experimental verification of the model needed

• Model-based process optimization (e. g. using Java)

• Process “design” capabilities (e.g. pad, abrasive, chemistry)
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