Development of an Integrated Model for Chemical-Mechanical Planarization (CMP)

David Dornfeld Laboratory for Manufacturing Automation (LMA) University of California at Berkeley

> CMP 2001 Symposium October 11, 2001

http://www.lma.berkeley.edu

Content

- Background on CMP research at Berkeley
- Modeling work and roadmap
- A Comprehensive Material Removal Model
- Experimental Validation
- Conclusions & Future Work

Acknowledgements

Researchers: Serdar Aksu, Uday Ayyagari, Andrew Chang, Edward Hwang, Sunghoon Lee, Jianfeng Luo, Zhoujie Mao

Research sponsors: UC SMART/SFR, NSF, and NSF/SRC ERC at Univ of Arizona, Applied Materials

Major Thrusts of Research at Berkeley

- Integrated model of CMP \checkmark
 - mechanical elements (abrasive size, shape, dist'n, pad characteristics- hardness and roughness, pressure, velocity, etc.)
 - chemical elements integration
 - validation/software "packaging" for CAD
- AE-based process feedback and optimization
- Consumable/surface design
- Metrology (scatterometry) for profile development
- Environmental modeling

Characteristics of slurry film thickness

Mechanical and Chemical Material Removal Effects vs Slurry Film Thickness

Source: Yongsik Moon and David A. Dornfeld, "Investigation of Material Removal Mechanism and Process Modeling of Chemical Mechanical Polishing (CMP)," Engineering Systems Research Center (ESRC), Technical Report 97-11, University of California at Berkeley (September 1997)

Effect of gap on CMP - material removal

Material removal per sliding distance

Preston's equation:

$$\frac{\Delta h}{\Delta t} = C \cdot P \cdot V = C \cdot P \cdot \frac{\Delta s}{\Delta t}$$
$$\frac{\Delta h}{\Delta s} = C \cdot P$$

(C=Preston's coefficient P = pressure, V=velocity, h=removed height, s=sliding distant t= time)

Mechanical Aspects of the Material Removal Mechanism in Chemical Mechanical Polishing (CMP)

CMP Parameters

CMP Modeling Roadmap

Objectives from Industrial Viewpoint - VMIC 2001

- Models are not reliable enough to be used as verification of process
- Usefulness of modeling is the ability to give feedback for "what-if" scenarios (predicting "polishability" of new mask designs) in lieu of time-consuming DOE tests
- Models should give some performance prediction for realistic, heterogeneous pattern effects
- Models should predict not only wafer scale phenomena but also have some capability to capture feature/chip scale interaction

Roadblocks for Modeling

- Multi-scale (wafer-, die-, feature-level) interactions must be integrated for global CMP modeling to be useful
- Linkage of models to upstream (deposition, etc.) and downstream (lithography,etc.) processes
- Models need to address defectivity
- New materials, consumables (pad, slurry, etc.) modeling and characterization

		MRR		Non-	Abra Conc Slurr		Othe Efflu	Energ	References		
		Wafer Level	Feature Level	Die Level	uniformity	y/Water usage uniformity		ent	Эy		
Empirical Model	Preston	\checkmark			\checkmark				\checkmark	Preston, 1927	
	Boning		\checkmark		\checkmark				\checkmark	Boning, <i>et al</i> , 1997-1998 (4)	
	Others		\checkmark	\checkmark	\checkmark				\checkmark	Various (10) incl. Burke, Runnels, Zhao	
Individual Model	Tribology	 ✓ 	\checkmark		\checkmark				\checkmark	Various (11)	
	Kinematic	\checkmark			\checkmark				\checkmark	Various (2)	
	Pad	\checkmark			\checkmark				\checkmark	Various (4)	
	Chemical	\checkmark			\checkmark					Various (6)	
Integrated Model		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
										– 🦰 LMA ———	

**All with an all purpose factor* K_e to represent the roles and interactions of other input variables except the down pressure and velocity

¹Preston, 1917, J. of Glass Soc. ^{2.} Zhao et. al., 1999, Applied Physics

© Laboratory for Manufacturing Automation, 2001

Motivations for a Comprehensive Material Removal Model

- Identify the most important input parameters related to Slurry Abrasives, Wafer, and Polishing Pad except the down pressure *P*₀ and velocity *V*
- Investigate the interactions between the input parameters
- Develop material removal rate formulation to consider the roles of the input parameters and their interactions
- Model as a basis for process design and optimization (including environmental impacts)

University of California at Berkeley

Chemical Aspects of CMP

- •Chemical and electrochemical reactions between material (metal, glass) and constituents of the slurry
 - (oxidizers, complexing agents, pH)
 - -Dissolution and passivation
- Solubility
- •Adsorption of dissolved species on the abrasive particles
- Colloidal effects
- •Change of mechanical properties by diffusion & reaction of surface

Interactions between Input Variables

Four Interactions: Wafer-Pad Interaction; Pad-Abrasive Interaction; Wafer-Slurry Chemical Interaction; Wafer-Abrasive Interaction

Source: J. Luo and D. Dornfeld, IEEE Trans: Semiconductor Manufacturing,, 2001

Framework Connecting Input Parameters with Material Removal Rate

Modeling of Pad and Wafer Interaction

Pad Surface :

• Rough and all asperities are in contact with wafer

Wafer Surface

• Smooth in comparison with pad surface

Pad Material:

• Young's Modulus E

Wafer Material

• Rigid-body in comparison with pad

Modeling of Pad-Abrasive Interactions on the Contact Area: Fraction of *Active* Abrasives

Interaction Between Wafer and Abrasive: Material VOL Removed by a Single Abrasive

Model of Material Removed by a Single Abrasive

Material Removal Rate as Functions of Down Pressure and Abrasive Size Distribution

Experimental Verification of Pressure Dependence of Material Removal Rate (MRR) (I)

MRR= N Vol= $K_1 \{1-\phi(1-K_2P_0^{1/3})\}P_0^{1/2}$.

Advantage over Preston's Eq. MRR= K_ePV+ MRR₀:

What input variables and how they influence K_e is predicable

SiO₂ CMP Experimental Data from Zhao and Shi, Proceedings of VMIC, 1999

Experimental Verification of Pressure Dependence of Material Removal Rate (MRR)(II)

 k_2 is a function of consumable factors including abrasives and polishing pad but independent of slurry chemicals. This agrees well with the model prediction.

© Laboratory for Manufacturing Automation, 2001

Abrasive Size Distribution Dependence of MRR: Particle Size Distribution^[1]

Five Different Kinds of Abrasive (Alumina) Size Distributions for Tungsten CMP

¹. Bielmann et. al., Electrochem. Letter, 1999

Abrasive Size Distribution Dependence of MRR: Experiment Results ^[1] VS. Model Predictions

Abrasive Particle Size X_{avg} (10⁻⁶m)

🍽 LMA

¹. Bielmann et. al., Electrochem. Letter, 1999

 $\ensuremath{\textcircled{}^\circ}$ Laboratory for Manufacturing Automation, 2001

Abrasive Size Distribution Dependence of MRR: MRR as a Function of Concentration and Abrasive Size Distribution

MRR Saturation at Concentration 10% for Smaller Abrasives

© Laboratory for Manufacturing Automation, 2001

Relationship between Standard Deviation and MRR Based on Model Prediction

University of California at Berkeley

Java Implementation of CMP Optimization Software based on the Material Removal Model

"Design" of consumables - Pad Example

Prototype surface, 20X

Prototype surface, 55X

Design software interface for prototype pad surface; geometry of individual elements, pitch and mechanical properties are Variable, courtesy of J. F. Luo, LMA, 2001

Basic Framework of the CMP Optimization Software

CMP 2001 Version 1, by Jianfeng Luo at LMA, UC Berkeley	
reprocessor Postprocessor Help Animation	

Preprocessor: Machine Setup

Preprocessor: Consumable Setup

📸 CMP 2001 Version 1, by Jianfeng Luo at LMA, UC Berkeley	<u>_ 8 ×</u>	👹 CMP 2001 Version 1, by Jianfeng Luo at LMA, UC Berkeley	_ & X
Preprocessor Postprocessor Help Animation		Preprocessor Postprocessor Help Animation	
📓 Polishing Slurry Dialog 🗙		Customized Polishing Pad Dialog	X
rSiurry Abrasives		-Pad Asperity Grid Top View	1010101
Slurry Dilution Ratio:		p0000000000000000000000000000000000000	
Abrasive Types: Silica Alumina		$\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ)(\circ$	$(\circ)(\circ)(\circ) $
Abrasive Weight Concentration:			
Abrasive Average Size: [UU] [0~3000jnm			
Abrasive Size Deviation: 25 [0~3000 jnm]			
		$\bigcirc \bigcirc $	
10 123 130 173 1100 1123 1130 1173 1200 1223 1230 ≣20 Size (nm)			
		pagagggggggggggg	
		Pad Asperity Grid Side View	
-0 rSturry Chemicals		Asperity Grid Density	1/50*50 um*2 5 um
Silicon Oxide Oxid izier		Width of Asperity Tip	10um
		Width of Asperities	40um
Tungsten Oxidizier		Pad Material Parameters	
H202 KMn04 Kl03 NH40H K3Fe(CN)6 Id H202 KMn04 Kl03 NH40H K3Fe(CN)6		Pad Young's modulus 100Pa Down Pressures Contact Area Ret Contact Pressures Contact Area Ret Contact Pressures Contact Area Ret Contact Pressures Contact Pr	sure Pad Topography
Aluminum Oxidizier			
H202 OKMr04 OK03 ONH40H OK3Fe(CN)6		CK 2 0.025 0.022 049 3 0.038 7,923 763 3 0.038 7,923 763	
OK Cancel		Cancel 4 0046 8,721.23	UU11
Slurry		Pad	
2			
		<i>(</i>	

University of California at Berkeley

Preprocessor: Wafer Setup

Dattara Sida Viaw		- Mafar Curratura	X
Pattern Side View ■Maximum Pattern Density			Wafer Curvature Rc: 2500.0 m
		-	
-Minimum Pattern Density			
		-	
Average Pattern Density			
		-	
Wafer Pattern		Nevieve Detters Dessity (200	
werage Pattern Density: 100%		Minimum Pattern Density: 100%	
Pitch Length in MaxDA: 1um		Pattern Height in MaxDA: 1um	
Pitch Length in MinDA: 1um		Pattern Height in MinDA: 1um	
Pitch Length in AvgDA: 1um		Pattern Height in AvgDA: 1um	
Material			
⊖ Silicon ⊖ Silicon O xide	O Copper	Aluminum O Tun	igsten Other
Wafer Size			
2 inch O 4 inch	🔾 6 inch	🖲 8 inch	🔾 12 inch
Wafer Curvature			K Gancel
		▶	

Postprocessor: Interface Pressure Distribution

Postprocessor: Velocity Distribution

© Laboratory for Manufacturing Automation, 2001

Postproc	essor: Dov	vn Pres	ssure D	epei	nden	cv of N	MRR
CMP 2001 Version 1, by Jia	anfeng Luo at LMA, UC Ber	kelev		1		5	_ 8
reprocessor Postprocessor <u>H</u> el	p <u>A</u> nimation						
Down Pressure Dependen	cy Dialog					×	
	1 4 1 5 1 6 1 1	7 8 9	111111111111111111111111111111111111111		14 Down F	15 16 Pressure (psi)	
- - -							
- - 10				-			
-							
-		, e					
_ 60 MRR (nm/min)		B					
-		a					
-	Ø						
1 <u>0 </u>	Ø						
-	B						
RR= G1[1-Fai(3-G2*P0^1/8)]P0^1.	/2	Down Pres	Portion of A <mark>Contact</mark>	Pr Active Abi 175	a Indentation	n MRR	
Patterned Wafer	Blanket Wafer	1	8.37 393	175	0.045	3.181	
: 38		▶ <mark>2</mark> 3	25.308 566.804	175	0.065	16.657	
		▶ 4	33.365 623.849	175	0.071	25.357	
2: 1.619			1411 047 16771171				
2: 1.619 prasive Average Size: 100nm		Maxim um A	Pattern Density: 100%	•			
2:1.619 prasive Average Size:100nm prasive Size Deviation:25nm		Maxim um I Average Pa Minimum P	Pattern Density: 100% attern Density: 100% Pattern Density: 100%	4			
2: 1.619 prasive Average Size: 100nm prasive Size Deviation: 25nm rd Topography Gonstant: 1/393		Maxim um H Average Pr Minim um P Down Pres	Pattern Density: 100% attern Density: 100% Pattern Density: 100% sures WIDNU %		οκ		

Postprocessor: WIWNU: Function of Pressure Distribution, Velocity Distribution and Pressure Dependency of MRR

Postprocessor: WIDNU: Function of Pattern Density and Pressure Dependency of MRR

Conclusions

• A comprehensive model is developed to explain the material removal mechanism in CMP

• The roles and interactions of polishing pad, slurry and wafer are being identified using this comprehensive model

MRR formulations considering the integrated effects of input variables are developed and verified

Future Work

- Further experimental verification of the model needed
- Model-based process optimization (e. g. using Java)
- Process "design" capabilities (e.g. pad, abrasive, chemistry)

