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Major Thrusts of Research at Berkeley

* Integrated model of CMP
* mechanical elements (abrasive size, shape,
dist'n, pad characteristics- hardness and
roughness, pressure, velocity, etc.)
» chemical elements integration
« validation/software “packaging” for CAD
» AE-based process feedback and optimization
« Consumable/surface design
» Metrology (scatterometry) for profile development
* Environmental modeling
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Mechanical and Chemical Material Removal
Effects vs Slurry Film Thickness

>

Material removal/sliding distance

Source: Yongsik Moon and David A. Dornfeld, “Investigation of Material Removal Mechanism and Process
Modeling of Chemical Mechanical Polishing (CMP),” Engineering Systems Research Center (ESRC),
Technical Report 97-11, University of California at Berkeley (September 1997)
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« Material removal per sliding distance

20 : : : : : : : : :
Preston’s equation: I iy
200 B B R . L=44.7N |-
= IO R R L=61.9N
< PN I S L=79.1N
5 e 8
(C=Preston’s coefficient E 50 A///Aﬂé‘ﬂ\ﬁv
P = pressure, V=velocity, 8 L B
h=removed height, s=sliding distant 0 B B DD
t= tlme) : : : : : :

Effect of gap on CMP - material removal

Material removal per sliding distance
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Scale effects — Abrasives/Pad
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CMP Modeling Roadmap
Objectives from Industrial Viewpoint - VMIC 2001

* Models are not reliable enough to be used as verification

of process

« Usefulness of modeling is the ability to give feedback for
“what-if” scenarios (predicting “polishability” of new mask

designs) in lieu of time-consuming DOE tests

« Models should give some performance prediction for

realistic, heterogeneous pattern effects

* Models should predict not only wafer scale phenomena
but also have some capability to capture feature/chip

scale interaction
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Roadblocks for Modeling

« Multi-scale (wafer-, die-, feature-level) interactions must
be integrated for global CMP modeling to be useful

« Linkage of models to upstream (deposition, etc.) and
downstream (lithography,etc.) processes

* Models need to address defectivity

* New materials, consumables (pad, slurry, etc.) modeling
and characterization

%, LMA—/
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Literature Review of Modeling of CMP
MRR Z © & | O ®: m References
=) S 5 o c ®
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@ 5 Q
Empirical Preston Preston, 1927
Model
Boning Boning, et al, 1997-1998 (4)
Others Various (10) incl. Burke, Runnels,
Zhao
Individual Tribology Various (11)
Model
Kinematic Various (2)
Pad Various (4)
Chemical Various (6)
Integrated Model
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Past 2-D Material Removal Rate (MRR) Models
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*Experimental Model 1: Preston’s Equation VPOv v i
MRR=K,P,V + MRR, where K, an all-purposed coefficient, ﬂ el
MRR, a fitting parameter, P,, Down pressure, and V, the Pad

relative Velocity.

e Analytical Model Considering Wafer-Pad Contact Area®: |p v v V
Zhao’s Equation O%| Piien
MRR= K (P,-P,;,)3V, where P,, a fitting parameter. Contact Area A
Active abrasive number is proportional to contact area. Contact
area [JP 73

*All with an all purpose factor K, to represent the roles and interactions of other
input variables except the down pressure and velocity

1Preston, 1917, J. of Glass Soc.
\ 2. Zhao et. al., 1999, Applied Physics

LMA—/
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Motivations for a Comprehensive Material Removal
Model

e Identify the most important input parameters related to
Slurry Abrasives, Wafer, and Polishing Pad except the
down pressure P, and velocity V

* Investigate the interactions between the input parameters

* Develop material removal rate formulation to consider
the roles of the input parameters and their interactions

* Model as a basis for process design and optimization
(including environmental impacts)

%, LMA—/
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Consumable Parameters including: Slurry Abrasive Concentration, Abrasive Size Distribution, Slurry Oxidizer Type and
Concentration, PH, Pad Topography and Pad Material (Hardness and Young’'s Modulus), Wafer Materials and Process
Parameters including Down Pressure, Relative Velocity, Slurry Temperature and so on.

\
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Chemical Aspects of CMP

Chemical and electrochemical reactions between
material (metal, glass) and constituents of the slurry
(oxidizers, complexing agents, pH)

—Dissolution and passivation

*Solubility

*Adsorption of dissolved species on the abrasive particles

Colloidal effects

*Change of mechanical properties by diffusion & reaction
of surface

(N AL MA—
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Velocity

Chemically
Influenced Wafer
Surface

Abrasive particles ®
in Fluid (All
inactive)

Pad asperity

k Source: J. Luo and D. Dornfeld, IEEE Trans: Semiconductor Manufacturing,,

2001

~

Interactions between Input Variables

Four Interactions: Wafer-Pad Interaction; Pad-Abrasive Interaction;
Water-Slurry Chemical Interaction; Wafer-Abrasive Interaction

area wit
number

Active abrasives
on Contact area
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Framework Connecting Input Parameters with A
Material Removal Rate

Basic Equation of Material Removal: MRR= N x Vol

A A

+ & Fraction of
' Active Abrasives

X avg-a
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1-Q((8-X,yg)/ O) where g is
the minimum size of active
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& Pad Material

\_
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Modeling of Pad and Wafer Interaction

Pad Surface:

¢ Rough and all asperities are in
contact with wafer

Wafer Surface

* Smooth in comparison with pad
surface

Pad Material:

* Young’'s Modulus E

Wafer Material

* Rigid-body in comparison with pad

~

Pad Topography

Y uﬁ Rt & éwafé£Qpag
: <.  Contact under
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a7 POP,13 Area A in
s 4k’ Contact
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‘ Scale Size)

Before deformation After deformation

An Asperity with
spherical tip under Load
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" Modeling of Pad-Abrasive Interactions on the
Contact Area: Fraction of Active Abrasives

-k Size
‘ ‘ ) Distribution ®
W) yan
Stage 1 — =
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Stage 4: Final ‘Stable’ &
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Interaction Between Wafer and Abrasive: Materlal\

VOL Removed by a Single Abrasive
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” Material Removal Rate as Functions of Down )
Pressure and Abrasive Size Distribution

MRR= Nx Vol= K, {1-q(1 -K,P,3)} P,12V.

Y Vv

Fraction of Active Abrasive:
1-Q((8-X,yg)/ O) where g is
the minimum size of active
abrasives

A

MRR= N Vol=K; C/X,, . }{1-0(X,,-8)/ O)} X,y
%, LMAJ
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Advantage over
Preston’s Eq. MRR=
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What input variables
and how they influence
K, is predicable

SiO, CMP Experimental Data
from Zhao and Shi,
Proceedings of VMIC, 1999
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Experimental Verification of Pressure
Dependence of Material Removal Rate (MRR)(II)
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Experimental data from Clark et. al., CMIC, 1999.
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Model: DI Water
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all k ,= 0.24 AL
T

2 4 6 8 10
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Experimental data from Ramarajan et. al., MRS Proceedings,

CMIC, 2000.

k, is a function of consumable factors including abrasives and polishing pad but independent of
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Abrasive Size Distribution Dependence of MRR: h

Particle Size Distribution 1!

Five Ditferent Kinds of Abrasive (Alumina) Size Distributions for Tungsten CMP

an

®— AKP 50 Mean Standard
25 - B— AKP 30 Size Deviation
> A AKP 15 (Hm) (Hm)
c ] —{O— AAQDT
g 20 y— AA2 AKP50 |0.29 0.070222
S 154 AKP30 | 038 | 0.118959
M I
(S &
;\3 10 1 AKP15 | 0.60 0.210633
5 AAQ7 0.88 0.288768
0 ’ — - - et AA2 2.00 1.056197
0.1 0.2 04 06 08 1 2 4 & B 10

Abrasive Size X (Log Scale)

\1. Bielmann et. al., Electrochem. Letter, 1999

LMA—/

© Laboratory for Manufacturing Automation, 2001 26



University of California at Berkeley

800
700
600
500
400
300

100

Material Removal Rate (nm/min)

4 . . . o .
Abrasive Size Distribution Dependence of MRR:
Experiment Results 1 VS. Model Predictions
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\ 1. Bielmann et. al., Electrochem. Letter, 1999
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Material Removal Rate (nm/min)

~

Abrasive Size Distribution Dependence of MRR:

MRR as a Function of Concentration and Abrasive Size Distribution
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\ 1. Bielmann et. al.., Electrochem. Letter, 1999
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Relationship between Standard Deviation

f..c; 18 - Std dev influenced —O— Xavg= 0.29um
E 1. 6 T m —{— Xavg=0.38um
g 1'4 siz* influenced / / \ —A—Xavg20.60um
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= 1 - \
)
é 0.8 /A/Z
g 06 |
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§ "2 5—8 = = =N
Z. 0 T T T
0 0.05 0.1 0.15 0.2 0.25 03

and MRR Based on Model Prediction

Standard Deviation (10°m)
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Java Implementation of CMP Optimization
Software based on the Material Removal Model
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“Design” of consumables - Pad Example A
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A O e N N e S e e U U A WV A
rPad Asperity Grid Side View
it:
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idth @ it
(Pad Material Parametars
Pad Young's modulus Ll »[1SParf 27 551 02psi
Pad Harndess L] » [100MPa 12 7EE 102psi L

o—

Cancel

Prototype surface, 55X Design software interface for prototype pad surface; geometry
of individual elements, pitch and mechanical properties are
Variable, courtesy of J. F. Luo, LMA, 2001
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Basic Framework of the CMP Optimization Software

%j CMP 2001 Version 1, by Jianfeng Luo at LMA, UC Berkeley

[clel=l==]=1
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Preprocessor: Machine Setup

[£3 chMP 2001 Version 1, by Jianfeng Luo at LMA, UG Berkele - =]

Preprocessor  Postprocessor  Help  Animation

sl
E3m

rhlachine Top View rilachine S ide View

rhMachine Types
) Applied: Mirra Mesa () Applied: Reflexion ) Ebaratech 1 LA 1 Strasbaugh m Other

rhachine Seometry Farameters

Head Diameter: |8 inch |J Flaten Diameter: 500mm|{| || |)|Genter Offset: 100mm |{|_|| |>|
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rRetaining Ring Farameters

Ring ¥Width: 10mm |q| || )lRing Pressure (psi) |6 | - |

| (o] 4 || Cancel |
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Preprocessor: Consumable Setup

E-n:-; MP 2001 Version 1, by Jianfeng Luo

Praprocessor  Postprocessor Help  Animation
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Freprocessor  Postprocessor

Help Animation

Preprocessor: Wafer Setup

=3 cnvP 2001 version 1, by Jianfeng Luo at LMA, UC Berkeley

== %]

Wafer Dialog
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Postprocessor: Interface Pressure Distribution

&3 cMP 2001 Versio

Preprocessor Postprocessor Help Animation

[&3 Interface Pres:

rPressure Distribution Map

rAverage Pressure Distribution along Diameter
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Freprocessor  Postprocessor  Help  Animation

Interface Velocity Distribution Dialog
rvelocity Distribution Top View

Postprocessor: Velocity Distribution )

Pad Size: 200.0 mm =

Water Pad Certer Offset 100.0 mm
Wiafer Vel_oc'rtg:a.xl.tl rpm

Pad “Yelocity, S0.0 rpm
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Water Size: 200.0 mm oo T
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rvelocity at Location
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Average Velocity at Location: 0.942 mfs

rvelocity Mon-LUniform ity

Velocity Mon-Uniform ity: 14 866 %
Average Velocity over Wafer Surface: 1.024 mfs

OK

:JIEIFIIFJIEIEIIEHEIEHEI

-

© Laboratory for Manufacturing Automation, 2001




University of California at Berkeley

-

=3 cvp 2001

Preprocessor Fostprocessor  Help  Animation

Eﬁ[}own Pressure Dependency Dialog

| 1z0
| an

jliD_ MRER {nmifmind

2
Lo

x|

| o 1 2 3 4 <] <] T 2 g |1EIII|1|1|II|15|II|15||||1|4||||1%||||1%|||

Daown Prassure (psi)

MRR= S1[1-Fai(a-Z2*FP0*1/2 PO /2

() Patterned wWafer Elanket YWafer

G138

Abrasive Average Size: 100nm

Abrasive Size Deviation: 25nm

Fad Topography Constant: 17293

Cl
4
21619 4
4
4
4
4

Pad Hardness: 100MFa

B e
= = IR

Average Pattern Density: 100%
Minimum Pattern Density: 100%
)] N i) N

-

© Laboratory for Manufacturing Automation, 2001

Postprocessor: Down Pressure Dependency of MRR A
= =]




University of California at Berkeley

[E5 cMP 2001 Version 1, by Jianfeng Luo at LMA, UC Berkeley

Freprocessor FPostprocessor Help  Animation
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&2 WIDNU Dialog

/" Postprocessor: WIDNU: Function of Pattern Density and
Pressure Dependency of MRR
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a .
Conclusions

* A comprehensive model is developed to explain the material
removal mechanism in CMP

* The roles and interactions of polishing pad, slurry and wafer are
being identified using this comprehensive model

 MRR formulations considering the integrated effects of input
variables are developed and verified

Future Work

® Further experimental verification of the model needed

* Model-based process optimization (e. g. using Java)

* Process “design” capabilities (e.g. pad, abrasive, chemistry)

N AL MA
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