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Motivation

» The chemistry of semiconductor processing is becoming increasingly
complex.

* Many potential chemistries are relatively unexplored.
« Experiments for new processes are expensive.

* Process optimization is expensive.

* Many properties cannot be measured experimentally.

Quantum chemical simulations enables a much faster and more detailed exploration of new

chemistries which are environmentally benign.
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Quantum Chemistry

¢ Quantum chemistry:
« first-principles description of molecular systems
« allows accurate description of chemical bonds
« allows detailed investigation of reaction mechanism

- Schrédinger equation:  HWY = EY
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Density Functional Theory
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Single-electron Hamiltonian Equation : One-€electron orbitals expanded
in abasis of atomic-like basis
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Basis Set Expansions

Each orbital is a sum of basis functions
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Accuracy of Methods

CBS-QCI/APNO
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Surface Reaction Modeling

* Cluster approximations are used to model Si(100)-(2x1)
¢ Si(100)-(2x1) reconstruction:

trench 1-dimer 3-dimer

o Cluster models: 1-dimer (blue), 3-dimer (copper),
V-trench, and A-trench (green).
* Hydrogen termination.
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Initial Adsorption of O,

Trapping-mediated pathway

Trapping-mediated pathway
* O, initially adsorbs on

1 the “up” Si dimer,

40 - Triplet forming Oz(a)

*  O,(a) then forms O,(b)
391 2] o peroxide bridge
State crossing barrier
= 0 structure
: = }
‘:g -20 - Singlet 35
g | \ IR 68 ~ | Molecular beam
3 <! predicts a desorption
60 - barrier lower limit of 60
. kcal/mol.

Source: Engstrom et al. (1991, 1992
Oz(b) g ( )

O,(a) adsorbed
state

peroxide
bridge
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Chemisorbed Species

% .
;,Af. T .
h
Peroxy radical 0,(a) adsorbed state O,(b) peroxide bridge

» Several species have been proposed as possible chemisorbed species:
* peroxy radical (Hartree-Fock, Goddard et al., 1976)
* peroxide bridge (UPS, Hofer et al., 1989)
* O, species (EELS, Silvestre and Shayegan, 1991)
* Peroxy radical is found to be unstable
- Both O, and peroxide bridge are both calculated
« 0O, corresponds to O,(a) adsorbed state
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Nonlocal Effects

« Does charge transfer involved in formation of O,(a) state extend to
neighboring dimers?

« Adsorbed state is calculated using both 1-dimer and 3-dimer clusters.

E_4 = 35 kcal/mol E_4 = 35 kcal/mol

« The effects of O, adsorption on the Si(100)-(2x1) surface is localized.
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Oxygen Insertion into Si(100)

* Oxygen insertion into Si-Si dimer vs. Oxygen insertion into Si-Si
backbond

O(bb)-O(a) O(sh)-O(a)
0 kcal/mol -8 kcal/mol
More Stable
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Oxygen Insertion into Si(100)

07 Insertion mechanism
-20 - . .
0. ¢ Formation of one siloxane
S % bridge and one siloxy
£ ] * radical, O(sb)-O(a) state
g 100 | : a7 - Second insertion of
W 120 _ = oxygen into the backbond,
a0l ' 13 O(sb)-O(bb) state.
-160 - ~_ . f
-180 - O,(b) -ffj}#f '
peroxide 7Y
bridge “\?
J_;.x
O(sb)-O(a)

O(sb)-O(bb)
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Initial Oxidation Mechanism

------------- O(st;)-O(a)
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Alternative Reaction Pathway

Direct Insertion into Si-Si backbond
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Low reaction barrier leading to
insertion into Si-Si backbond. 7
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AE (kcal/mol)

Mechanism NH; on Si(100)-(2x1)

Insertion Mechanism:;

1. NH,(9) initially adsorbs
on the “down” Si atom.

2. NH,(a) dissociates into
0 * NH,(a) and H(a).
10 - T 3. NH,(a) inserts into Si-Si
26 dimer bond.
-20 - 20 51 57 4. NH,(a) dissociates into
30 2 4 NH(a) and H(a).
40 - ‘ * Insertion barrier is higher
than desorption barrier.
S0 e, W y * TPD Spectra (Chen et
-60 - AR al., 1992)
0 73% of NH,(a) species
-70 - @ will recombine with H(a)
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Atomic N Insertion
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Nonlocal Effects

 Electron transfer from NH;(g) to the Si(100) surface is delocalized to
the neighboring dimers along the same row, on the same side.
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=% Atomic Layer Deposition (ALD)
: Advantages of ALD

» Accurate and simple thickness control
l » Excellent conformality and reproducibility

» Atomic level control of material composition
‘ ‘ ‘ ‘ ‘  High quality materials
’—' . . . . '—‘ * Possibility for interface modification

W‘T‘T‘T‘%‘w

| | Applications of ALD

l  Electroluminescent display phosphors
 High-k dielectrics for microelectronics

* No gas phase reactions

» Wide processing temperature window

» Deposition of multilayer structures

e Diffusion barriers for interconnects

» Transparent conductors

» Corrosion protection

. . 18
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Atomic Layer Deposition of SIO,

L 2

Reaction between SiCl, Reaction between H,0
and adsorbed OH groups and adsorbed CI groups
i
|

H,O molecules

e —————————
Each cycleresultsin one monolayer growth of SO,
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Hydroxylation : Propsed Mechanisms

-70.1

-62.7 -70.1
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Pathway ) g ,."

Exp: 22 kcal/mal
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Catalytic Effect of NH; on SiCl, Half-Reaction

-7.5 (623 cmY)

NH, simultaneously accepts one of H from a surface OH

group and donates one of H to Cl atom of adsorbed
SiCl,(a)
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H,O Half-Reaction
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ZrO2 Atomic Layer Deposition

« Atomic Layer Deposition (ALD) occurs through a sequence of self-
limiting surface reaction steps

Cwla
rﬁmﬁiﬁ] CRATIAIY . goeote Schematic representation of ALD
o e using self-limiting surface chemistry
and an AB binary reaction sequence
¥|B (SM George, AW Ott, and JW Klaus,

J. Phys. Chem, 1996)
L

Repeat

* Here, the ALD of ZrO, using ZrCl, and H,O is investigated:
ZrCl, + 2 H,0 - ZrO, + 4 HCI

. . 24
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Zr0O2 ALD Surface Reactions
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Subsequent ZrO, ALD Reactions

Reaction of H,O with the Zr-Cl* surface site

-2
H.,0(q) HCI() Reaction of H,O with the Zr-Cl site results
&&o Q jﬁ“' in a Zr-OH* site in place of the Zr-CI* site
‘?# q ’hﬁ'.’flh-'“-:
Qs : \;( Trapping-mediated mechanism:

1. Zr-CI*-H,0O complex is formed

2. HClI(a) is formed from one H atom from
H,O and one C| atom from ZrCl,

3. HCIl desorbs

'
6]
| |

AE (kcal/mol)

» The H,0 complex is very stable!
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Subsequent ZrO, ALD Reactions

Reaction of H,O with the Si-Cl* surface site

y =10
o |

‘9 -
11
12 -
& - 0 TS
HZO(g) _. 8
] %—@ § j 10  Direct dissociation reaction.
: ;E E , * No stable complex formed
! -
T » Reaction with H,O with the Si-
5:;. e \1/4 Cl site results in a Si-OH* site
-4 . P o
Si-Cl* ! in place of the Si-Cl* site
2 ., =0
HCI(9)
Si-OH*
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Subsequent ZrO, ALD Reactions

Reaction of ZrCl, with the Si-OH* surface site

- =
4 | HCI (g)

e.L
Si-OH* k“;. Zr;CI* Trapping-mediated mechanism:

12 . HCI (a) @ 1. ZrCl,-Si-OH* complex is formed
~ 5 @ 2. HCI(a) is formed from one H
g 20 | 43 8 atom from Si-OH and one Cli
S ) 4 4 atom from ZrCl,
g a0 27
< 22 3. HCI desorbs
i by

40 -

45
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f_,?lﬁl Reaction of ZrCl, with the Si-OH surface site
oy - Y results in a Zr-Cl* bonds in place of Si-OH*
A zrCly(a)
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Zr-O Complexes

+ H 2rCl, (g) H0) %%a
@e TN °
_!

:

!.
Si-OH* Zr-CI*

ZrCl, adsorption H,O adsorption

« Stable intermediates formed through the interaction between an
oxygen lone pair with an empty d-orbital of Zr atom.

 No complexes formed between Si and O atoms since Si does not
have low-lying empty orbitals.
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A s,
[

0 kcal/mol -22 kcal/mol

-

More stable

« SiO,-like bonding is more stable than silicide-like bonding.

« This agrees with periodic slab calculations by Kawamoto et al.(IEEE
Trans. Dev. Lett., 2001) that shows the SiO,-like bonding is more
stable than silicide-like bonding.
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Subsequent ZrO, Growth

Reactions on Zr-OH* site

o
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15 - ©)
00

101 i + HCI(g)
E z | /\ Zr-O-ZrCl *
‘:3 5 AGyqq \/ Trapping-mediated pathway:
X~ -10 - AG
‘(5 15 > (8 1. Zr-OH*-ZrCl, complex is
%‘ 20 - AG,; M formed
d 5 AH 2. HCl(a) formation transition state
-8
35 | 3. HCI(a) is formed from one H
atom from H,O and one C| atom
® Zr-OH*-2rCl, 7, 0 zrcl,*Hel from 2rCly
complex complex 4. HCI desorbs
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Subsequent ZrO, Growth

Reactions on Zr-Cl* site
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Zr-Cl*-H,0
complex

AH,
o @
}. 3. HCI(a) is formed from one H

atom from H,O and one ClI
atom from ZrCl,

Zr-OH*-HClI
complex 4. HCI desorbs
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Conclusion

* The ALD of ZrO, using ZrCl, and H,O have been investigated. The
binary reaction can be divided into two half-reactions:

0 Zr-OH*+ ZrCl, - Zr-O-ZrCI* + HCl
0 zr-C*+H,0 - Zr-OH* + HCI

« Detailed atomistic mechanisms of the deposition along with the
energetics have been studied:

* First layer on the clean Si(100)-(2x1) surface, resulting in four reaction
sites: Zr-CI*, Si-ClI*, Si-OH*, and Si-H.
» Subsequent growth of ZrO, on both Zr-OH* and Zr-CI* sites

* Understanding of the surface reactions reveals potential problems:
« Stable complexes preventing further reactions

« Raising the temperature results in more adsorbed complexes desorbing
than further dissociate
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ALD Surface Chemistry of SIO,

Transition State Cl-Termination

%HCI

Surface Si-OH E, = 21.9 kcal/mol AE = -7.8 kcal/mol

‘ How to make use of ALD chemistry for surface passivation?

. . 35
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Transition State Protected Surface

@/E—»

Si-OH E, =29.7 kcal/mol AE = -0.4 kcal/mol
SiCl,CH,
% Transition State Protected Surface
. i/%m

Si-OH E, = 22.5 kcal/mol AE = -6.4 kcal/mol

s ‘ Cl substitution reduces activation barriers of surface reactions. ‘




Transition State Protected Si-OH Surface

tm e

Si-OH E, = 22.5 kcal/mol AE = -6.4 kcal/mol

% Transition State Unreacted Si-H Surface
Si-H

— N2 C o) ﬁ%%CI

E, = 65.3 kcal/mol AE = 24.1 kcal/mol

s ‘ Passivation reaction is unfavorable on Si-H terminated surface. ‘




Effect of Cl Substitution and Selectivity

Selectivity of Surface Protection Reaction
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‘ Extremely high selectivity for Si-OH over Si-H terminated surfaces.
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Growth of Nanowires on Si (100)
with Styrene and Propylene

STM H abstraction

to activate the surface Styrene
Adsorption

Activated
Surface

Self-assembled H abstraction to create a -
molecular wires surface radical to propagate
formed on Si (100) the chain reaction
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Growth of Nanowires on Si (100) from Propylene

1. Applied STM

Electric field 3. Propylene
Adsorption
2. Activated
Surface
CH,=CH-CH,4
f: ..\..:p

Self-Assembled molecular wiresformed on Si
(100) surface: Energy reduced by vdwW
(~3.3 kcal/mol per each pair)
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Growth of Propylene Nanowires on Si (100)-2x1
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