

Simulations of Chemical Reactions for Semiconductor Processing

Jeung Ku Kang, Collin Mui, Yuniarto Widjaja, Stacey Bent

Department of Chemical Engineering

Charles B. Musgrave

Departments of Chemical Engineering & Materials Science and Engineering Stanford University, Stanford, CA 94305

- The chemistry of semiconductor processing is becoming increasingly complex.
- Many potential chemistries are relatively unexplored.
- Experiments for new processes are expensive.
- Process optimization is expensive.
- Many properties cannot be measured experimentally.

Quantum chemical simulations enables a much faster and more detailed exploration of new chemistries which are environmentally benign.

Quantum Chemistry

- Quantum chemistry:
 - first-principles description of molecular systems
 - allows accurate description of chemical bonds
 - allows detailed investigation of reaction mechanism

$$\rho = \sum_{i} \phi_{i} \phi_{i}^{*} \qquad E(\rho) = E_{KE}(\rho) + E_{NE}(\rho) + E_{J}(\rho) + E_{X}(\rho) + E_{C}(\rho) \qquad \text{DFT}$$

Single-electron Hamiltonian Equation :

$$\frac{\partial E(\rho)}{\partial \rho} | \phi_i >= 0$$

One-electron orbitals expanded in a basis of atomic-like basis functions

$$\phi_i = \sum_n c_n \varphi_n$$

Stanford University Department of Chemical Engineering and Materials Science and Engineering

Basis Set Expansions

Each orbital is a sum of basis functions

$$\boldsymbol{\phi}_i = \sum_n c_n \boldsymbol{\varphi}_n$$

Barriers (74 chemical reactions)			∆H (58 reactions)	
	AMD	MAD	AMD	MAD
B3LYP	3.5	15.6	3.0	20.7
G2	3.1	13.4	1.4	7.5
KMLYP	0.9	2.6	1.2	5.6
CBS-QCI/APNO	1.0	2.2		

J. K. Kang, and C. B. Musgrave, J. Chem. Phys., Dec. 22, 2001

Surface Reaction Modeling

1-dimer

3-dimer

Cluster approximations are used to model Si(100)-(2×1)
 Si(100)-(2×1) reconstruction:

 (10)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)
 (110)

Cluster models: 1-dimer (blue), 3-dimer (copper), 5-dimer (gold),

V-trench, and Λ -trench (green).

• Hydrogen termination.

trench

5-dimer

Initial Adsorption of O₂

Chemisorbed Species

adical C

O₂(a) adsorbed state

O₂(b) peroxide bridge

- Several species have been proposed as possible chemisorbed species:
 - peroxy radical (Hartree-Fock, Goddard et al., 1976)
 - peroxide bridge (UPS, Höfer et al., 1989)
 - O₂⁻ species (EELS, Silvestre and Shayegan, 1991)
- Peroxy radical is found to be unstable
- Both O_2^- and peroxide bridge are both calculated
 - O_2^- corresponds to $O_2(a)$ adsorbed state

Nonlocal Effects

- Does charge transfer involved in formation of O₂(a) state extend to neighboring dimers?
- Adsorbed state is calculated using both 1-dimer and 3-dimer clusters.

E_{ads} = 35 kcal/mol

E_{ads} = 35 kcal/mol

• The effects of O_2 adsorption on the Si(100)-(2×1) surface is localized.

Oxygen Insertion into Si(100)

 Oxygen insertion into Si-Si dimer vs. Oxygen insertion into Si-Si backbond

Oxygen Insertion into Si(100)

Insertion mechanism

- Formation of one siloxane bridge and one siloxy radical, O(sb)-O(a) state
- Second insertion of oxygen into the backbond, O(sb)-O(bb) state.

Alternative Reaction Pathway

Direct Insertion into Si-Si backbond

Insertion Mechanism:

- 1. NH₃(g) initially adsorbs on the "down" Si atom.
- 2. NH₃(a) dissociates into $NH_2(a)$ and H(a).
- 3. NH₂(a) inserts into Si-Si dimer bond
- 4. $NH_2(a)$ dissociates into NH(a) and H(a).
 - Insertion barrier is higher than desorption barrier
- TPD Spectra (Chen et al., 1992
 - ➡ 73% of NH,(a) species will recombine with H(a)

Atomic N Insertion

Nonlocal Effects

• Electron transfer from $NH_3(g)$ to the Si(100) surface is delocalized to the neighboring dimers along the same row, on the same side.

Advantages of ALD

- Accurate and simple thickness control
- Excellent conformality and reproducibility
- Atomic level control of material composition
- High quality materials
- Possibility for interface modification
- No gas phase reactions
- Wide processing temperature window
- Deposition of multilayer structures

Applications of ALD

- Electroluminescent display phosphors
- High- κ dielectrics for microelectronics
- Diffusion barriers for interconnects
- Transparent conductors
- Corrosion protection

Atomic Layer Deposition of SiO₂

5

Hydroxylation : Propsed Mechanisms

Stanford University Department of Chemical Engineering and Materials Science and Engineering

Stanford University Department of Chemical Engineering and Materials Science and Engineering

ZrO2 Atomic Layer Deposition

 Atomic Layer Deposition (ALD) occurs through a sequence of selflimiting surface reaction steps

Schematic representation of ALD using self-limiting surface chemistry and an AB binary reaction sequence (SM George, AW Ott, and JW Klaus, J. Phys. Chem, 1996)

• Here, the ALD of ZrO_2 using $ZrCI_4$ and H_2O is investigated: $ZrCI_4 + 2 H_2O \rightarrow ZrO_2 + 4 HCI$

ZrO2 ALD Surface Reactions

Subsequent ZrO₂ ALD Reactions Reaction of H₂O with the Zr-CI* surface site

Reaction of H₂O with the Zr-Cl site results in a Zr-OH* site in place of the Zr-Cl* site

Trapping-mediated mechanism:

- 1. Zr-Cl*-H₂O complex is formed
- 2. HCI(a) is formed from one H atom from H₂O and one CI atom from ZrCI₃
- 3. HCI desorbs

The H₂O complex is very stable!

Subsequent ZrO₂ ALD Reactions Reaction of H₂O with the Si-CI* surface site

- Direct dissociation reaction. No stable complex formed
- Reaction with H₂O with the Si-Cl site results in a Si-OH* site in place of the Si-Cl* site

Subsequent ZrO₂ ALD Reactions Reaction of ZrCl₄ with the Si-OH* surface site

Trapping-mediated mechanism:

- 1. ZrCl₄-Si-OH* complex is formed
- 2. HCI(a) is formed from one H atom from Si-OH and one CI atom from ZrCl₄

3. HCl desorbs

Reaction of **ZrCl**₄ with the **Si-OH** surface site results in a Zr-Cl* bonds in place of Si-OH*

Zr-O Complexes

- Stable intermediates formed through the interaction between an oxygen lone pair with an empty d-orbital of Zr atom.
- No complexes formed between Si and O atoms since Si does not have low-lying empty orbitals.

Thermodynamics of Interface Structures

- SiO₂-like bonding is more stable than silicide-like bonding.
- This agrees with periodic slab calculations by Kawamoto *et al.*(IEEE Trans. Dev. Lett., 2001) that shows the SiO₂-like bonding is more stable than silicide-like bonding.

Subsequent ZrO₂ Growth

Reactions on Zr-OH* site

Subsequent ZrO₂ Growth

Reactions on Zr-CI* site

HCI(g)

Trapping-mediated pathway

- 1. Zr-Cl*-H₂O complex is formed
- 2. HCI(a) formation transition state
- **3. HCI(a)** is formed from one H atom from H₂O and one CI atom from ZrCI₃
- 4. HCI desorbs

Conclusion

- The ALD of ZrO₂ using ZrCl₄ and H₂O have been investigated. The binary reaction can be divided into two half-reactions:
 - \Rightarrow Zr-OH* + ZrCl₄ \rightarrow Zr-O-ZrCl* + HCl
 - \Rightarrow Zr-Cl* + H₂O \rightarrow Zr-OH* + HCl
- Detailed atomistic mechanisms of the deposition along with the energetics have been studied:
 - First layer on the clean Si(100)-(2×1) surface, resulting in four reaction sites: Zr-Cl*, Si-Cl*, Si-OH*, and Si-H.
 - Subsequent growth of ZrO₂ on both Zr-OH* and Zr-CI* sites
- Understanding of the surface reactions reveals potential problems:
 - Stable complexes preventing further reactions
 - Raising the temperature results in more adsorbed complexes desorbing than further dissociate

How to make use of ALD chemistry for surface passivation?

Protection of Surface Si-OH Groups SiCl(CH_3)3 Transition State

5

CI substitution reduces activation barriers of surface reactions.

Passivation reaction is unfavorable on Si-H terminated surface.

Effect of CI Substitution and Selectivity

Extremely high selectivity for Si-OH over Si-H terminated surfaces.

Growth of Nanowires on Si (100) with Styrene and Propylene

Growth of Styrene Nanowires on Si (100)

Stanford University Department of Chemical Engineering and Materials Science and Engineering

Growth of Nanowires on Si (100) from Propylene

Self-Assembled molecular wires formed on Si (100) surface : Energy reduced by vdW (~3.3 kcal/mol per each pair)

Growth of Propylene Nanowires on Si (100)-2x1

Stanford University Department of Chemical Engineering and Materials Science and Engineering

Acknowledgements

Funding NSF SRC LSI Logic DARPA

Prof. Rick Garfunkel Prof. Chris Chidsey

