

Experiments and Modeling of Mass Transfer for Cross-Contamination in Plasma Processes

Student: Marci Y. Liao

Advisors: Jim McVittie and Krishna Saraswat Stanford Nanofabrication Facility, Stanford, CA 94305

Collaborators: Mike Deal (Stanford Nanofabrication Facility) Bruno Schueler (Physical Electronics, Inc.)

Thrust B: Subtask B5-3

July 18, 2002

Outline

- Background on issues
- Motivation
- Cross-contamination experiments
 - Procedure and results
- Mass transfer model
 - Comparison to experimental results
 - Transfer coefficients, k
- Other contaminants
- Conclusions and future applications

Background

• Material diversity increases as process complexity increases

Vertical MOS

Background (2)

- Issues of cross-contamination
 - Low volatility material is hard to remove from chamber
 - New materials may require their own dedicated chamber
 - Mass transfer mechanism between chamber wall and wafer needs to be understood

Motivation for Studying Zr Contamination Rate Transfer

- ZrO₂ is promising candidate for gate dielectric
- Calculations suggest that interstitial Zr and Hf have mid-gap trap levels
- Interstitial Zr and Hf expected to have high diffusion rates in Si
- ZrO_2 etch by-products are less volatile than SiO_2 etch by-products
- Good vehicle for studying contamination rate transfer

Motivation for Studying Zr Contamination Rate Transfer (2)

ESH:

- Understanding mass transfer can help optimize chamber cleaning, wafer cleaning
- Know how long chamber needs to be seasoned to reduce cross-contamination
- Help choose cleaning scheme to increase yields and reliability

Experimental Setup

- Applied Materials P5000 MERIE plasma etcher
- Measure contamination on wafers following ZrO₂ etching
- Use TOF-SIMS (collaborated with Physical Electronics, Inc.)
 detection limit ~7e7 atoms/cm² for Zr

Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

Experimental Setup (2)

Experiment 1 Results

Experiment 2 Results

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Model Basis

- Contamination transfer rate \propto vapor pressure and sticking coefficient
- Use ideal gas approximation for impingement rate
- Transfer rate coefficients are constants
- Assumptions:
 - no spatial variations
 - constant pump rate
 - no wall sputtering

Obtaining k Constants

 k_1 and k_3 :

- Mass transfer from chamber to wall, chamber to SiO_2 wafer
- \propto Zr impingement rate, R, times sticking coefficient
- $R \propto$ chamber partial pressure of Zr

 k_2 and k_4 :

- Mass transfer from wall to chamber, chamber to SiO₂ wafer
- Escaping rate from surface is balanced with the impingement rate at the volatility vapor pressure
- Extra sputtering term is added to k_4 for etching of newly deposited Zr
- k₅:
- Mass transfer from surrounding area (re-sputtering)

Model: Experiment 1

Model: Experiment 1 (continue)

Model: Varying k's for Experiment 1

- ↑k₂, ↑transfer from chamber wall,
 ↑wafer concentration
- Faster decay from wall, faster total decay with time

• $\uparrow k_3$, \uparrow wafer impingement, \uparrow wafer concentration

Model: Experiment 2

Model: Experiment 3A (SiO₂ Etch Time Constant)

Model: Experiment 3B (ZrO₂ Etch Time Constant)

Advantages of the Mass Transfer Model

- Straightforward kinetics model
- Model gives insight into the different time scales and sources for the transfer mechanism
- Relationship between the chamber wall and wafer surfaces in mass transfer can be seen
- Can see sensitivity of rate transfer factors (k's)

Other Contaminants

• Initial ZrO₂ wafers have other contaminants

- Interesting behavior for Mg
 - Contaminant from walls and wafer

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

S3

S2

S4

S5

S6

S8

S9

S10 S11 S12 S13 S14

Conclusions and Future Application

- Cross-contamination becoming more important
- Experimental results show complex accumulation and decay behaviors
- Developed mass transfer model based on volatility and sputtering
- Reasonable fit with experimental data
- Opportunity to investigate other materials