Supercritical Drying and Repair of Ultra Low-k Films

R.F. Reidy, B.P. Gorman, D.W. Mueller, A. Zhang, R. A.Orozco-Teran

1

Questions to be addressed

- Can SC-CO₂/co-solvent systems effectively remove water from porous ULK's without diminishing key properties?
 - What changes are introduced?
- Does supercritical processing change ULK dielectric behavior?
 - What are the mechanisms?
- Can ULK's be functionalized in SC-CO₂?
 - Is this an viable means of introducing hydrophobicity?
 - Can plasma damaged MSQ be repaired in supercritical media?
- Are etchants effective on ULK's in SC-CO₂?

Critical Points for Solvents

Experimental Ultra Low-k (ULK) Materials				
	MSQ	TEFS		
Dielectric Constant	~2.3	~2.3		
Elastic modulus (GPa)	4	12		
Other properties	Hydrophobic; loses $CH_3 in H_2$	Absorbs some water; after 400C, water lost, but $k=2, 1 \rightarrow 2, 3$		
4	and O ₂ plasma	University of North Texas Materials Synthesis and Processing Laboratory		

Drying of ULK Films

- Determine the effects on TEFS of:
 - liquid and SC-CO₂ based solutions
 - SC-CO₂ vs SC-CO₂ + EtOH
 - films with different porosities
- Drying of ashed MSQ
 - liquid and SC-CO₂ based solutions
 - SC-CO₂ vs SC-CO₂ + EtOH

Liquid CO₂ Drying of dense TEFS Films

7

Why do SC-CO₂+EtOH treated films gain water?

- Hypothesis:
 - TEFS films are highly porous and may have trapped moieties absorbed into pores
 - → removal of these species may expose surfaces that can absorb water when exposed to ambient lab conditions
 - \rightarrow removal may induce structural changes in film

Ashed-MSQ Drying

- Films exposed to 90% humidity for 48 hours
- Dried with:
 - liquid CO₂
 - SC-CO₂
 - SC-CO₂ + ETOH

Effects of SC-processing on TEFS

TEFS: IR Transmittance Changes after SC-CO₂

• How did we do the calculations?

Changes in refractive index were calculated from the transmission spectra using standard Fresnel equations, including the reflections from the back of the substrate

- Before treatment: n = 1.21
- After treatment: n = 1.19

Possible Causes for IR Transmittance Behavior

- Change in porosity and/or electronic structure
 - ellipsometry experiments → changes in visible refractive index
- Change in film chemistry
 - detailed FTIR experiments

Similar behavior in MSQ?

- TEFS IR were conducted with double polished wafers in transmission
- Double polished MSQ were unavailable
- \rightarrow ellipsometry of MSQ samples

SC-treated MSQ: Ellipsometry

	Film	Refractive
	thickness	index
	(nm)	
Before SC treatment	526	1.280
After 1 hr SC-CO ₂	525	1.279
After 1 hr SC-CO ₂ +	529	1.277
EtOH		

Effects of SC-treatments on MSQ

- ellipsometry: very small changes in n
- → changes in dielectric constant may be due to ionic polarizations, not electronic (porosity)
- → cleaning out of pores (trapped solvents and/or ash products?)

Why study changes in k after SC processing?

- Confirm reports of lower k post SC drying
- Need to study mechanism to develop process
- Goal → reproducible lowering of k without diminishing other properties

Supercritical Functionalization of ULK films

- In situ functionalization of low-k materials
 - ambient conditions \rightarrow 12-24 hours
 - supercritical conditions \rightarrow «1 hour
- Goals:
 - TEFS \rightarrow improve hydrophobicity
 - MSQ \rightarrow dry and repair post ash damage

Determination of MSQ repair: contact angle measurements

- Plasma removes methyl groups → loss of hydrophobicity
- Ashing also causes some densification
- Functionalization may return hydrophobicity and expand collapsed region

Contact Angle Measurements

	TEFS	Contact Angle	
	As deposited	30	
	Treatment 1 10% 15 min	63	
	Treatment 1 10% 30 min	101	
	Treatment 2 5% 5 min	76	
	Treatment 2 10% 5 min	96	
	Treatment 2 10% 15 min	105	
	MSQ		
	As deposited	103	
	H_2 ashed	7	
24	Treatment 1 5% 5 min	100 University of North Texas Materials Synthesis and Processing Laboratory	

Effectiveness of liquid and SC-CO₂-based fluids etchants

- Comparison between liquid and SC-CO₂ based solutions
- Determination of ambient etchants solubilities in SC-CO₂
- Viability of combinations of etchants

MSQ SC-Etching Results

Summary of FTIR of films after exposure:

- Liquid CO₂ 2000:1 ETOH:HF/Organic acid \rightarrow no change in wafer or significant water adsorption
- SC-CO₂+ 2000:1 ETOH:HF \rightarrow stripped wafer
- SC-CO₂+ 2000:1 ETOH:HF/Organic acid strips wafer→ within 1st minute MSQ begins to flake off wafer

- Attack is both on MSQ and at MSQ-Si interface

Liquid vs SC-CO₂ as Etch Solvent

- SC reactor has sight glass → apparent full solubility of etchant in liquid and SC-CO₂
- Same etchant concentration in both solutions
- Liquid CO₂/etchant → no significant material removal
- SC-CO₂/etchant \rightarrow aggressive removal
- Transport and/or chemical effect?

Summary

- Drying of TEFS with SC-CO₂ appears more effective than SC-CO₂ +EtOH
- SC drying/cleans → some changes in ULK films, mechanisms still unknown
- SC drying removes water from ashed MSQ
- SC functionalization → very rapid and effective → efficient drying agent

Supercritical Research Efforts

<u>Activity</u>

Dielectric and mechanical effects due to SC-processing

SC-repair of plasma damaged ULK films

Effect of rapid pressure changes on cleaning and water removal

<u>Status</u>

On-going work: FTIR, ellipsometry, capacitance measurements, nanoindentation

On-going work: FTIR, ellipsometry, contact angle, NRA, RBS

On-going work: FTIR, ellipsometry, nanoindentation

Supercritical Research Directions

Activity

in situ observation of drying, cleans, and possibly etch processes

Studies of SC processing on patterned wafers

ultra low-k film synthesis

<u>Status</u>

Building SC- FTIR cell (completion: July 2002)

Building SC reactor for 200mm wafers, designing reactor for 300mm wafers (July 2002) Developed and characterized $SC-CO_2$ soluble templates, preliminary synthesis

experiments

University of North Texas Materials Synthesis and Processing Laboratory