Chip-Scale Modeling of Pattern Dependencies in Copper Chemical Mechanical Polishing (CMP) Processes

SRC TeleSeminar June 20 th, 2002

Tamba E. Gbondo-Tugbawa, Tae Park, and Duane Boning

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Microsystems Technology Laboratories, Rm 39-629.

http://www-mtl.mit.edu/Metrology/Publications.html

Contributions

- Development of a semi-physical chip-scale pattern dependent model (with calibration/characterization methodology) for copper CMP processes.
 - Accounts for temporal evolution of bulk copper polishing and pattern dependencies in bulk copper polishing
 - □ Accounts for temporal and pattern dependencies of dishing and erosion
 - Framework is flexible and extendable to account for effects in all copper CMP processes

Development of a simulator (based on model equations) that can:

- □ Predict dishing and erosion across an entire chip, for a random layout
- Capture the temporal evolution of bulk copper polishing across an entire chip, for a random layout
- Assess the effectiveness of dummyfication in minimizing within-die non-uniformity
- □ Identify bulk copper clearing problems in multi-level metallization schemes
- □ Aid in the generation of smart interconnect design rules

Outline

✓ Introduction to Copper CMP

□ What is Chemical Mechanical Polishing?

□ Copper CMP Process

- Copper CMP Model Development
- Chip-Scale Simulation
- Conclusion and Future Work

What is Chemical Mechanical Polishing?

Slurry:

- An abrasive held in chemical solution
- A chemical solution with no abrasives

Pads:

• Porous pad transports slurry and supplies mechanical energy to surface

Material removed by a combination of

- Mechanical action -- relative movement and pressure necessary
- Chemical action -- slurry solution enhances or inhibits material removal

Copper Damascene Process

Copper

Barrier

Dielectric

Substrate

Layer

 Si_3N_4

Si

- Deposit silicon nitride (to act as etch stop), and deposit dielectric on top of the nitride
- Etch the dielectric to form trenches for the copper interconnects
- Deposit a barrier layer to act as an adhesive and a diffusion barrier
- Deposit a thin seed copper film by PVD, followed by a thicker copper film by electroplating.
- Use CMP to clear copper overburden and barrier layer between trenches

1

2

3

4

5

6

Copper CMP Process (cont.)

Outline

Introduction to Copper CMP

✓ Copper CMP Model Development

- □ Integrated Copper CMP Characterization and Modeling Methodology
- □ Intrinsic Stages in Copper CMP
- □ CMP Test Mask Design
- □ Metrology
- □ Dishing and Erosion Dependencies
- Density-Step-Height Model
- □ Integrated Contact Mechanics and Density-Step-Height Model
- Chip-Scale Simulation
- Conclusion and Future Work

Integrated Copper CMP Characterization and Modeling Methodology

The Three Intrinsic Stages in Copper CMP

CMP Test Mask Design

Mask 931 - Version 1.2

- Single level mask with electrically testable and physically testable structures.
- Layout Factors: Line width and line space combinations
 - $\hfill\square$ Minimum feature size: 0.25 μm
 - □ Density range: 10 % to 90 %
 - $\hfill\square$ Pitch range: 0.5 μm to 200 μm
- Structures:
 - □ Arrays and isolated lines
 - Slotting
- Other variants of this mask have been designed and used in this work

Metrology

- Copper Thickness Measurement
 - □ Blanket wafers: Four Point Probe (from Prometrix)
 - Patterned wafers: MetaPULSE 200x (from Rudolph) or Impulse 300 (from Philips Analytical)
 - MetaPULSE: spot size of 20 μm and measurement accuracy of 300 Å for thick copper films
 - Patterned Wafers: Electrical measurements (can only be done after bulk copper and unwanted barrier film are completely cleared from wafer)
- Surface Profile Measurement
 - HRP (tip size of about 0.1 μm) and Veeco Profiler with AFM capabilities (tip size of less than or equal to 0.1 μm)
 - Levelling a surface profile can be very challenging
- Dielectric Thickness Measurement
 - UV-1280 (From KLA Tencor) spot size of 5 μm at high magnification
 - F5 (From KLA Tencor) spot size of less than or equal to 5 μm at high magnification. Measurement accuracy of 50 - 100 Å on oxide

Metrology: Copper Thickness Measurement

Scan Length (um)

Metrology: Dishing and Erosion Measurements

Array erosion = Average field dielectric thickness loss + Recess

- Dishing depends on line width and line space (for conventional copper CMP processes).
- Dishing depends on polish time. It reaches steady state quickly for fine features.
- Dishing depends on process settings and consumable set.

- Erosion depends on pattern density and line space.
- Erosion depends on polish time (overpolish time).
- Erosion depends on process settings and consumable set.

Density-Step-Height Model: Pattern Density Effect

- Basic idea: up-area removal rate depends on up-area fraction (pattern density).
- The effective density at each point depends on nearby topography and the layout density at that point.
- The effective density can be determined by averaging local layout densities over a planarization length (L).

Pattern Density Effect (cont).

Mask 931- version 1.2

Electroplated effective pattern density assuming a planarization length of 2.76 mm

- Use circular weighted window (based on deformation of an elastic material) to calculate average or effective density for each point on die.
- The polish rate at each point is inversely proportional to the effective density at that point.

Density-Step-Height-Model: Main Idea

- Removal rate is a function of pressure, relative speed, and consumable set.
 - □ Find the functional dependence of removal rate on pressure for given speed, and consumable set. (OR)
 - □ More generally, find the functional dependence of removal rate on pressure and speed, for given consumable set.
- Effective polish pressure is a function of step height, pattern density and the applied pressure
 - According to Hooke's law, the effective polish pressure is linearly dependent on step height
- Combine the removal rate versus pressure relationship with the pressure versus step height (and density) relationship to get a removal rate versus step height (and density) relationship.

Fig. 1: Removal Rate versus Pressure

Fig. 3: Removal Rate versus Dishing

Density-Step-Height Model Parameters

Intrinsic Stage One		Intrinsic Stage Two		Intrinsic Stage Three	
r _{cu}	Effective blanket copper removal rate	r _{cu}	Effective blanket copper removal rate	r _{cu}	Effective blanket copper removal rate
L ₁	Planarization length	r _b	Effective blanket barrier removal rate	r _{ox}	Effective blanket dielectric removal rate
H _{ex}	Critical Step Height	L ₃	Planarization length	L ₃	Planarization length
		d _{max}	Maximum dishing	d _{max}	Maximum dishing
		Ψ	Edge rounding factor	Ψ	Edge rounding factor

- H_{ex} : An analytical function of line width and line space (or pattern density).
- d_{max} : An analytical function of line width and line space (or pattern density)
- ψ : An analytical function of line space
- r_{cu} : Observed to be time dependent

Model Parameter Extraction Methodology: Stage 1

Model Parameter Extraction Methodology: Stage 3

Calibration Experiment: Three Step Cu CMP Process

				Down	Speed	Selectivity
Step #	Platen #	Pad	Slurry	force (psi)	(rpm)	Cu:TaN:Oxide
1	1	Stacked	EPC-5001	5	63	249:4:1
2	2	Stacked	EPC-5001	2	43	232:3:1
3	3	Stacked	10K-1	3	100	2.3:1:5

Three step process experiment on Mirra

- Test Mask: MIT mask version 1.2
- Time split experiments in each step
 - □ 5 patterned copper wafers in step 1
 - □ 7 blanket copper wafers in step 1
 - □ 5 patterned copper wafers in step two (one polish time duplicated)
 - □ 3 blanket copper, 3 blanket oxide, and 3 blanket TaN wafers in step 2
 - □ 4 patterned copper wafers in step 3
 - □ 3 blanket copper, 3 blanket TaN, 3 blanket oxide wafers in step 3

Array and Field Sites used in Extraction

Array site numbers

Field site numbers

■ 24 array sites: all density and pitch structures

■ 39 field sites: Used only in the extraction of step one model parameters

Initial Copper Thickness Deposited (measured)

Significant long range thickness variation (global heights) across the die

Model Fits vs. Data: Stage 1

Model Fits vs. Data: Stage 1 (cont.)

Model Fit vs. Experimental Data: Step 2 (edge rounding included in equations)

Model Fit vs. Data: Step 2 (cont.)

Model Fits vs. Data: Step Three (with edge rounding)

Without edge rounding, the extracted blanket dielectric rate is too high

Model Fits vs. Data: Step Three (cont.)

Verification of Extraction Procedure

Extraction errors in step one lead to inaccurate overpolish time simulation, and inaccurate erosion simulation

Issue: Global Heights (Hills and Valleys)

- ECD causes large initial global heights.
- As we polish, the global heights change, and bring about pressure redistribution.
- Excessive overpolish could lead to large global heights.
- Dishing and erosion on metal level one, cause global heights on metal level two.
- The issue of global heights, raises two questions:
 Is there contact on up-areas?
 - □ If there is, what is the degree of contact?
- Global heights need to be taken into account for accurate dishing and erosion prediction.

Outline

Introduction to Copper CMP

Copper CMP Model Development

- □ Integrated Copper CMP Characterization and Modeling Methodology
- □ Intrinsic Stages in Copper CMP
- □ CMP Test Mask Design
- □ Metrology
- □ Dishing and Erosion Dependencies
- Density-Step-Height Model
- ✓ Integrated Contact Mechanics and Density-Step-Height Model
- Chip-Scale Simulation
- Conclusion and Future Work

Integrated Contact Mechanics and Density-Step-Height Model

Envelop function for the electroplated profile shown in electroplated profile above

$$w_b(x,y) = k_c \iint_A \left(\frac{p_b(x,y)}{\sqrt{(x-\xi)^2 + (y-\eta)^2}} \right) d\xi d\eta$$
$$P_e = \begin{cases} P_1 - p_b & w_e = w_b \\ 0 & w_e > w_b \end{cases}$$

 p_b : Perturbation pad pressure

w_b: Perturbation pad displacement

w_e: Pertubation wafer displacement

*P*₁: Applied pressure

P_e: Envelope pressure (wafer pressure)

 k_c : Contact factor (units of 1/kPa)

Initial Envelope and Envelope Pressure

- The long range thickness variation or global height is captured by the envelope function
- The initial envelope pressure is not necessarily the applied pressure as assumed by the density-step-height model

Integrated Model (cont).

Integrated Model Fits vs. Data: Step 1 Process

ICDSH fits data better than DSH

height model

Integrated Model Fits vs. Data: Step 1 Process (cont.)

Integrated Model: Verification of Extraction

Simulated overpolish times for ICDSH closer to actual overpolish times
 ISDSH simulated erosion closer to data than DSH simulated erosion

Outline

- Introduction to Copper CMP
- Copper CMP Model Development
- ✔ Chip-Scale Simulation
- Conclusion and Future Work

Integrated Electroplating and CMP Chip-Scale Simulations

Integrated Electroplating and CMP Chip-Scale Simulations (cont.)

Accuracy of Simulator

- Three step copper CMP process performed on layout not used in copper CMP model and copper electroplating model calibration.
- Use simulator to predict the dishing and erosion across the entire die, for the new layout
- Compare predicted results to measured results, at specific points on the die.

Step #	Platen #	Pad	Slurry	Down force (psi)	Speed (rpm)
1	1	Stacked	EPC-5001	5	63
2	2	Stacked	EPC-5001	2	43
3	3	Stacked	10K-1	3	100

Wafer #	Step one	Step two	Step three
Z-1	63	102	55
Z-2	63	117	0

Die Level Predicted Results: Dishing

Dishing after step two for wafer Z-1

Dishing after step three for wafer Z-1

Die-Level Predicted Results: Erosion

Erosion after step two for wafer Z-1

Erosion after step three for wafer Z-1

Predicted Results vs. Measured Data

After step two for wafer Z-1

Dishing

After step three for wafer Z-1

Erosion

Predicted Results vs. Measured Data (cont).

Dishing after step two for wafer Z-2

Erosion after step two for wafer Z-2

- Predicted results follow trend in measured data reasonably well, and are reasonably close to the measured data
- Simulator shows great promise for:
 - □ Predicting dishing and erosion on random layouts
 - Assessing the effectiveness of dummyfills in minimizing within-die non-uniformity
 - Detect clearing problems in multi-level metallization schemes

Defining Dishing in an array with Varying Line Space

- What is dishing when the line space in an array varies?
- Does it make sense to talk about dishing in such a case, or should we now talk about the copper thickness loss in the trench?

Conclusion and Future Work

- A chip-scale pattern dependent copper CMP model has been developed
- A comprehensive model calibration methodology has been developed
- A simulator (based on model equations) has been developed. It can be used to:
 - □ Predict dishing and erosion across an entire chip
 - Assess the effectiveness of dummification in minimizing within-die non-uniformity
 - □ Detect any bulk copper clearing problems in multi-level metallization schemes
 - □ Aid in developing smart interconnect design rules
- Future work needed includes:
 - □ Incorporate wafer level variation into the model
 - □ Incorporate process variation (day to day, lot to lot, etc.) into the model
 - Study relationships between model parameters and process parameters (down force, table speed, pad stiffness, slurry type, slurry flow rate, etc.)

Acknowledgments

- DARPA & NSF
- SRC/ERC for Environmentally Benign Semiconductor
- Texas Instruments
 - □ Chidi Chidambaram, Christopher Borst, Greg Shin and Dennis Buss
- International SEMATECH
 - □ Paul Leferve, Steve Hymes, John Nguyen, Albert Gonzales, and Shinkook Lee
- Conexant Systems Inc.
 - Lawrence Camilletti and Maureen Brongo
- Praesagus Inc.
- SKW Associates
- PDF Solutions Inc.