

Infrared Spectroscopy for Process Diagnostics & Control

ASTeX[®] Baratron[®] D.I.P.[™] ENI[®] HPS[®] Mass-Flo[®] On-Line[™] PICO[™] Spectra[™]

Dr. Matt Richter

Director of West Coast Operations MKS Instruments, On-Line Products Group

matthew_richter@mksinst.com

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Outline

• IR Basics.

– The whys and hows.

Film Metrology

- What's new in IR metrology.
- The Films
 - Epi, Doped Oxides, MEMS, Photoresist and high-k films.

Gas Composition Analysis

- The Tools
 - Full-spectral and filter based instruments.
- The Applications
 - Process Exhaust Investigation, Chamber Clean Endpoint, Scrubber Efficiency.

Conclusions

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

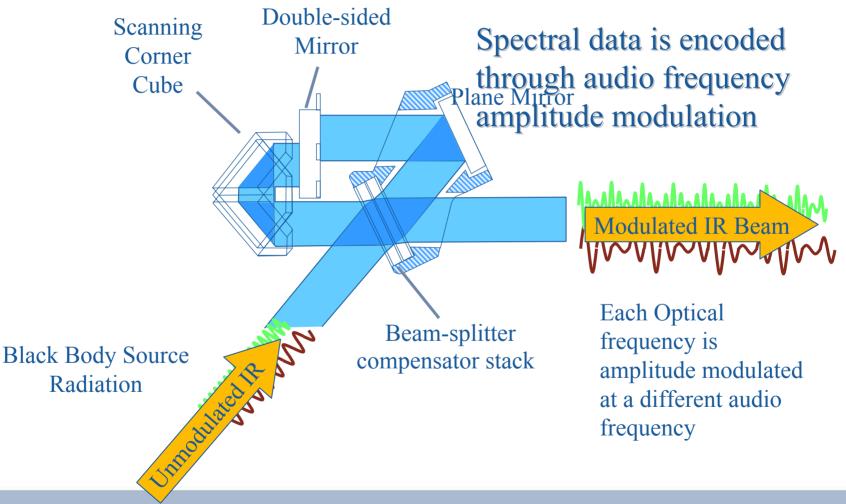
Why FTIR?

Mid IR Spectroscopy is sensitive to:

- Layer Thickness
 - "Standard" optical metrology
- Doping Concentration
 - Epi Silicon, optoelectronics
- Vibrational Modes
 - Materials Composition
 - For both Films and Gasses!

Modern Process FTIR Interferometers

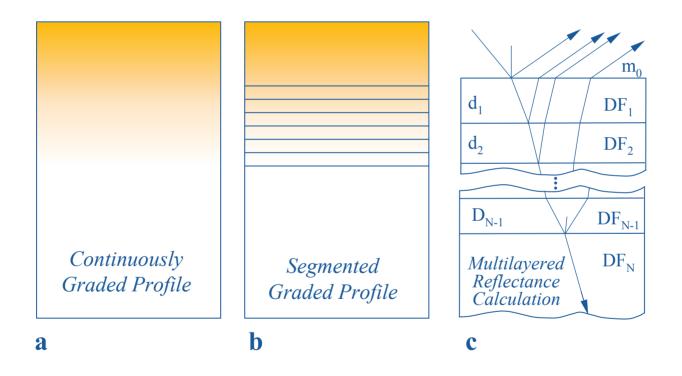
Rugged, Stable, Multipurpose.



NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

FTIR Operation

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar


Thin Film Metrology

ASTeX
Baratron
D.I.P. [™]
ENI®
HPS®
Mass-Flo®
On-Line [™]
PICO [™]
Spectra™
TeNTA [™]

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

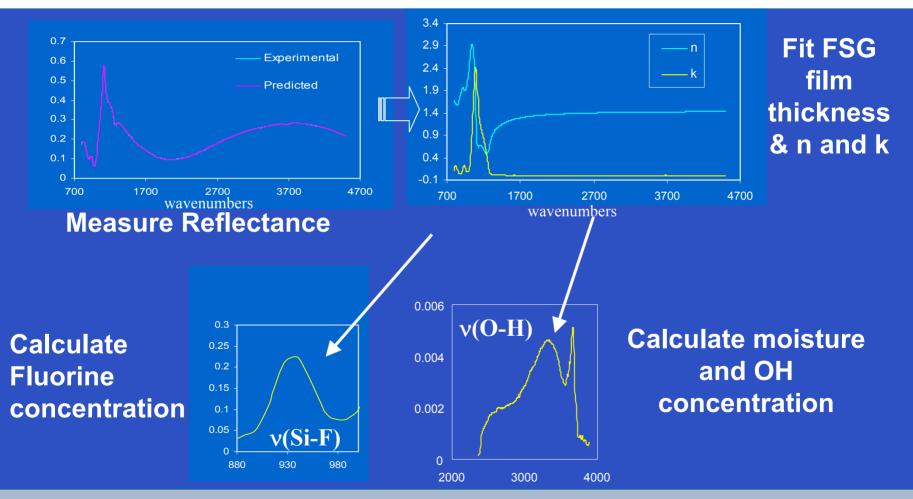
Reflectance from a Film Stack

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Recent Innovations

OLT Advances

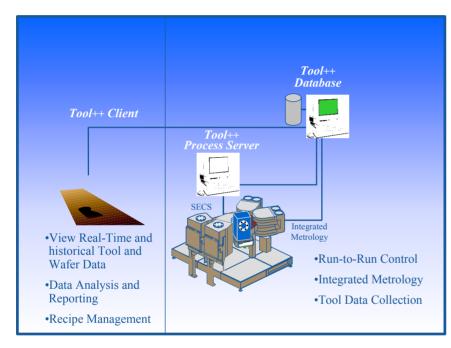
- *k*-space analysis
 - Independent of "t"
 - Smaller training set
- High Throughput Optics
 - Small (<<1mm) spot size
 - ~ 1 second per point
 - No backside artifacts works with any substrate
- Modeling Advances
 - Multivariate Chemometric Modeling
 - FSG (easy)
 - BPSG (harder)

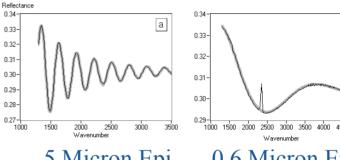

Other Industry Advances

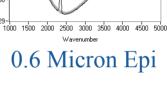
- *R*-space analysis
 - "t", "n" & "k" convolved
 - Larger training set
- Hardware Advances
 - UV, IR & ellipsometry combined
 - Special chuck for low doped wafers **NOT applicable to any substrate**.
- Modeling Advances
 - Neural net front-end

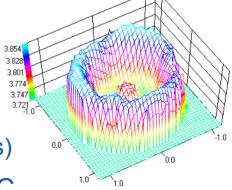
Illustration of FilmExpert Application™

Composition of Fluorinated Silica Glass




NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

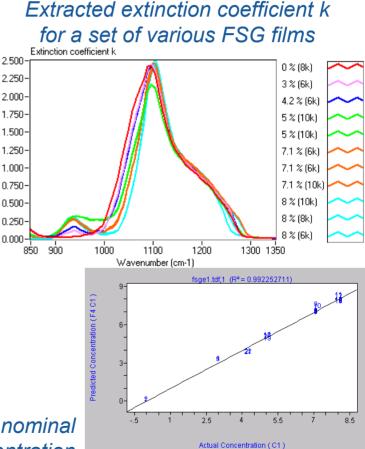

b


Film Example 1: Epi Si

5 Micron Epi

- "Standard" IR Metrology Application
 - Exploits sensitivity to Free Carriers (Active Dopants)
- Deployed from stand alone, to integrated with APC.

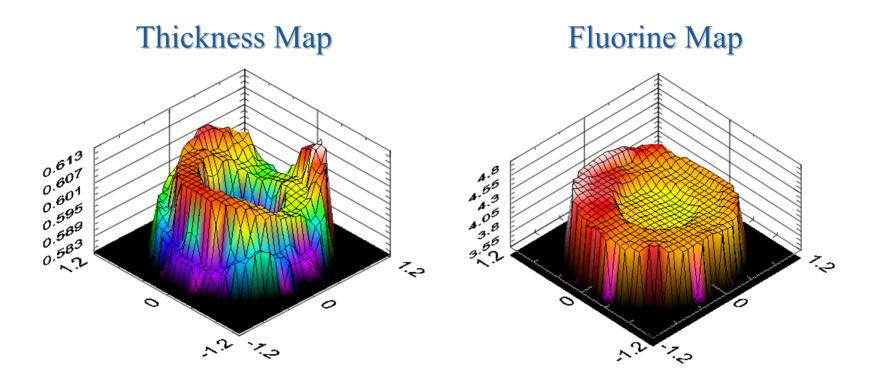
NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar



Film Example 2: FSG Composition

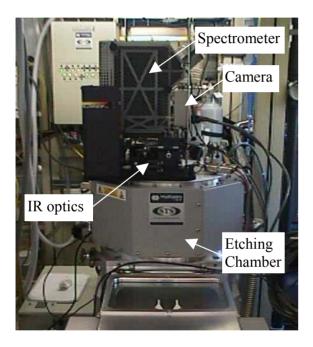
Measures:

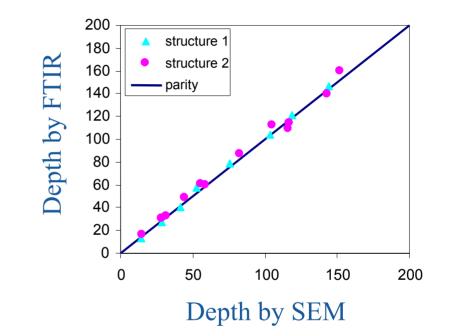
- FSG film thickness
- FSG film dielectric function (or n and k)
- Extracts from the dielectric function:
- %F concentration
- moisture concentration



NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Fast Mapping Capability



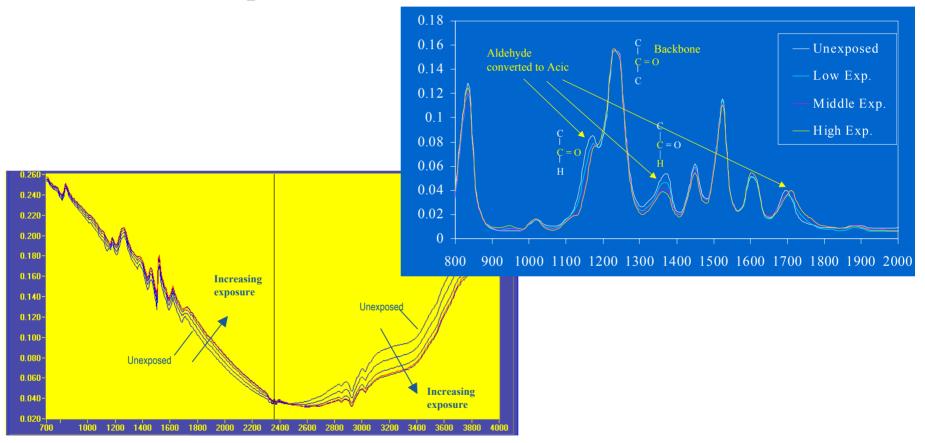

(Nominal 600 nm, 4.2 wt% F)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Film Example 3: in-situ MEMS

- Difficult Because
 - Long working length: greater than 12"
 - Active Plasma Present: Changing Background Light
 - Large Etch Depths: Can be Several Hundred Microns

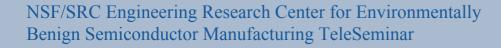
NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

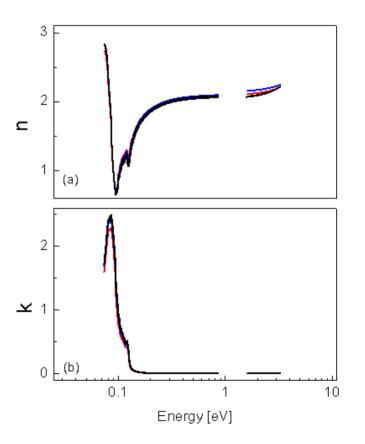

In-Situ, Real-Time Measurement of Etch Depth

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Film Example 4: DUV Resists

Chemically complex films are ideal for IR metrology.

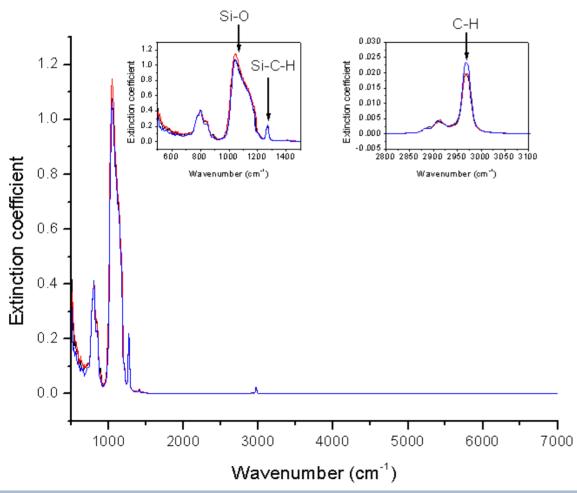

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar


• mks

Film Example 5: TaO (VIS-IR combo)

• Needs:

- Spectral n & k is usually measured in visible / UV range
- IR range provides useful information on molecular absorption, related to composition
- FilmExpert[™] measurements performed both in the IR range (20-1.7 micron) and visible range (380 – 800 nm)
- Results:
 - VIS level thickness accuracy with IR derived compositional information.



Film Example 6: C-doped Silicon Dioxide Films

- Carbon concentration is the key parameter to be measured
- Standard FTIR measurements are performed in transmission on high-resistivity, double-side polished test wafers
- Standard FTIR measurements only measure composition, not thickness
- FilmExpert[™] measurements can be performed on actual product wafers, and extract the composition information as well as film thickness

C-doped Silicon Dioxide Films – Results

Carbon concentration determined from the extracted extinction coefficient spectrum, which is independent of thickness

Thickness extracted from the interference fringe in the reflectance spectrum

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Film Summary

- New levels of chemical complexity are requiring direct access to compositional information.
- IR metrology is ideally suited for compositional measurement due to the bond-level specificity of vibrational spectroscopy.
- IR measurement techniques can be integrated into fabrication equipment for automated control of critical processes.

Gas Composition Analysis

• The Products

- Filter Based and Full Spectral Instruments
- Gas Phase Specifics
 - Molecular Structure, IR Activity & Rotational Fine Structure

Applications

- Abatement: Scrubber Efficiency
- Trace Detection: Feed Gas Purity Analysis
- Chamber Effects: First Wafer and Chamber Wall
- Process Control: Chamber Clean Endpoint

The Products

- Full Spectral Instruments (FTIR Based)
 - Use for simultaneous quantification of multiple gasses.
 - Use when flexibility of detection is a requirement: (Process Diagnostics & Development).
 - Required if different gasses overlap excessively.
- Non-Dispersive Instruments (Filter Based)
 - Use when only one gas needs to be tracked.
 - Use when size is a constraint.
 - Use when cost is a constraint.

Current Product Family

ProcessSense[™]

Application Specific, Single Gas Partial Pressure Sensor

MultiGas[™] 2030

All-purpose gas analyzer. 2030p: Continuous gas purity analyzer

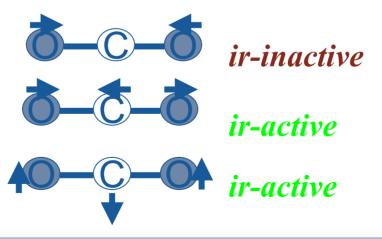
MultiGas™*MPX*

Multiplexed Gas Analyzer

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Gas Phase Spectroscopy

- Molecular Vibrations.
 - All molecules, and portions of molecules, vibrate.
 - Radiation will interact with vibrating molecules via a dipolar interaction.
 - Energy will be absorbed when the frequency of the radiation matches that of the molecular vibration.
 - A molecule can be visualized as several weights (the atoms) connected by springs (the bonds).
 - This system can be understood in a classical Hooke's Law context: the frequency depends on
 - the mass of the atoms
 - the strength of the bonds



NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Light and Matter

- EM radiation (*i. e., light*) has a magnetic and an electric field.
- The electric field can interact with the electrons of a molecule, and with a permanent or induced dipole.
- Molecular vibrations which cause a change in dipole moment are infrared active.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

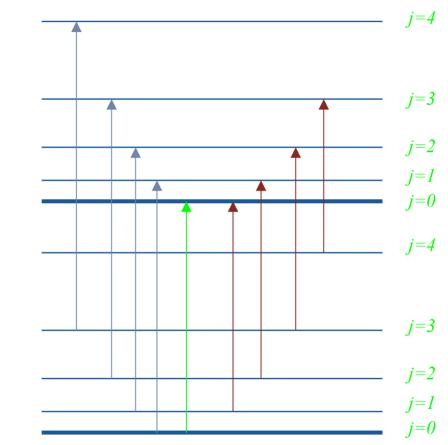
Gases not Measured by Infrared Spectroscopy

- Oxygen O₂
- Nitrogen N₂
- Hydrogen H₂
- Argon -Ar
- Neon -Ne

- Chlorine Cl_2
- Fluorine $-F_2$
- Bromine Br₂
- Helium He

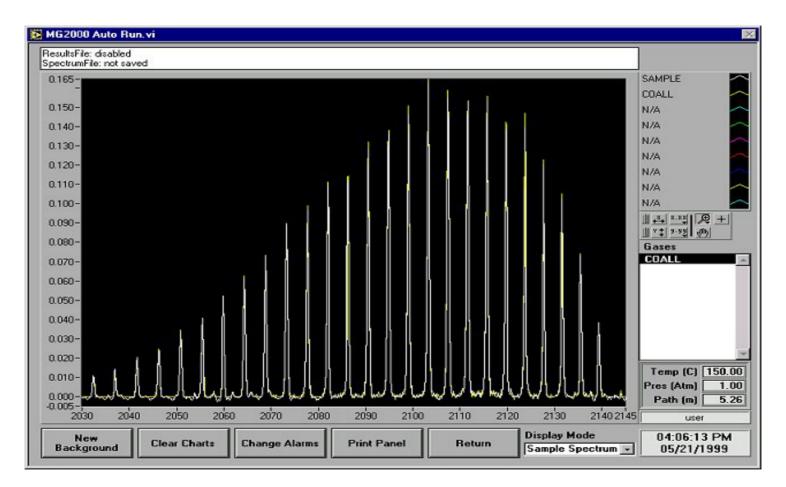
Gases Measured By Infrared

Everything Else!

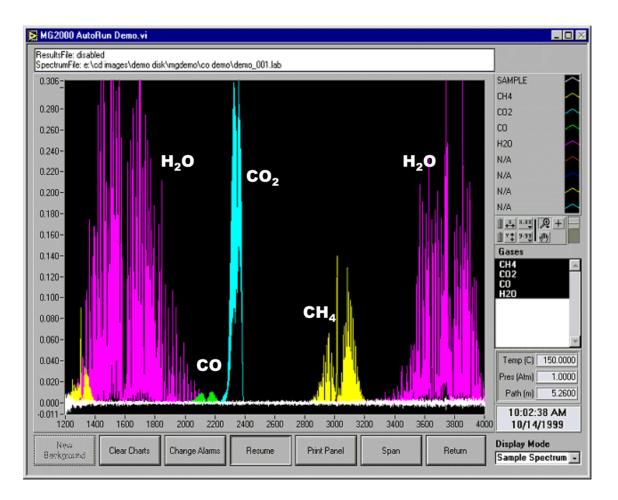

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Rotational Fine Structure

F

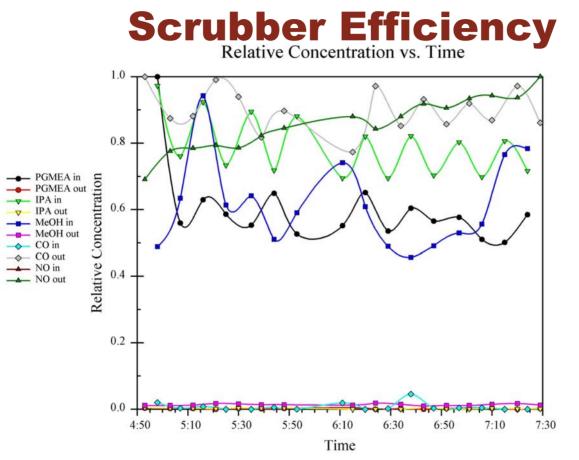

- An infrared interaction may involve not only a vibration, but also quanta of rotation.
- Rotational level
 distributions are
 molecule-specific!
- Population distributions depend on experimental conditions.

(energy levels not to scale!)


Carbon Monoxide Spectrum

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Gas Mixture Analysis

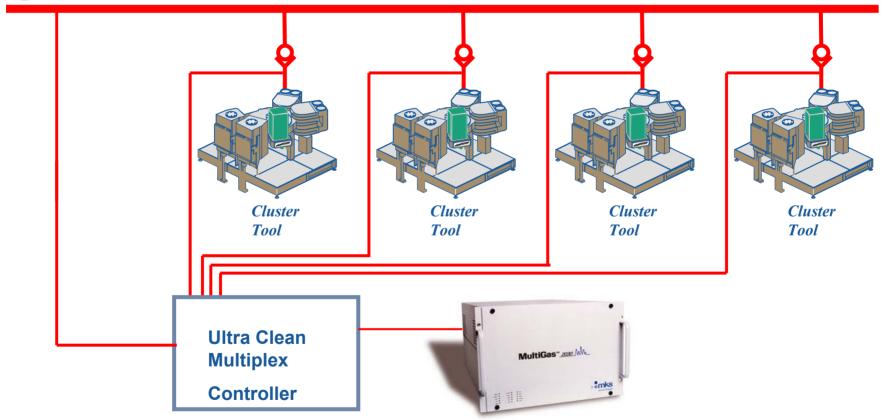

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Gas Example 1: Scrubber Efficiency

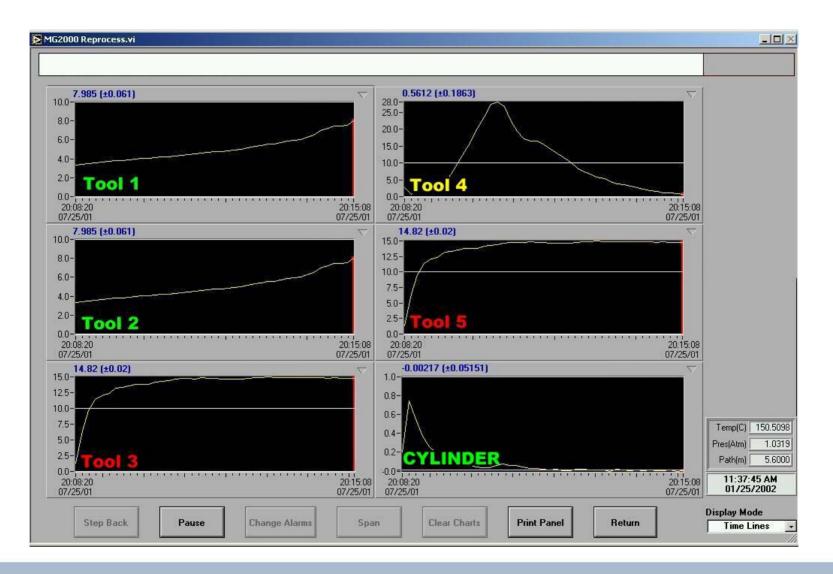
- By the time the gas makes it to the scrubber, the gas mixture is complex.
- Reactions can occur in the exhaust lines, making the analysis more complex.
- This application uses two MultiGas systems, one before and one after the scrubber.
 - This is to capture fast transients.
- All IR active species can be accounted for.

• This technique can measure efficiency, load and mass released to atmosphere (mass not scrubbed).

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar


Gas Example 2: Feed-gas Purity.

- Several processes (like GaN LEDs) are ultra sensitive to moisture in the ammonia. High PPB levels of contamination can ruin yields.
- Ultra-low detection levels require special instrument construction. The MultiGas 2030p is designed specifically for sampling ultrapure feed lines.
- Low PPB moisture detection demonstrated in NH3 and NF3, other gasses under development.


Gas Sampling for Several Cluster Tools

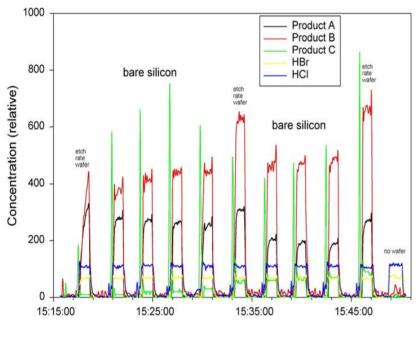
H₂ Process Gas

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

• mks

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Gas Example 3: Process Diagnostics


- The process effluent contains significant process information.
 - For dep, it's what's put in the chamber less what's left on the wafer.
 - For etch, it's the gas introduced into the chamber plus what's been removed from the wafer.
- Because the measurement is after the tool, it is noninvasive and won't shift the process.
 - People don't worry about the exhaust line, but do worry about the feed lines and chamber integrity.
- Can be like abatement example, quantifying emissions and green house gas loading.
 - By measuring a specific tool, individual process efficiencies and mass exhausted from the tool can easily be quantified for estimating abatement

NSF/SRC Engeneering TeleSeminar

Cl2 back to 20 sccm

Process Diagnostics

First Wafer Effects

Wall Chemistry Effects

14:52:00

1000

750

500

250

0

14:47:00

Concentration (relative)

Product A

Product B

Product C

Cl2 increased

to 40 sccm

Cl2 increased

to 60 score

Cl2 reduced

to 0 scom

14:57:00

HBr

HCI

SiF4

• The possibilities are endless.....

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

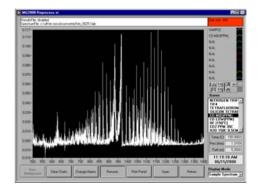
Other Process Diagnostic Examples

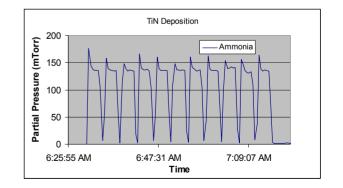
- Gas Panel Purging and Gas Mixing
 - MultiGas technique has identified several undesirable gas mixing events during panel purge. An example is TEOS mixing with NF3, with produces particles.
- Remote Plasma Clean Process Optimization
 - Real-time observation of NF3 in the exhaust line is an indication of dissociation efficiency. An inefficient clean recipe was found and eliminated within minutes of process characterization.
- New Chemistry Process Development.
 - FTIR-based instrument used in SEMATECH EPIT for C3F8/02 clean chemistry process optimization.

Gas Example 4: Remote Plasma Endpoint

- The switch to remote plasmas for radical generation is incompatible with OES based endpoint techniques.
 - The increased clean rates of remote plasma processes have driven their adoption, but the processes are timed due to no endpoint monitor.
 - Timed processes are very inefficient, wasting gas, tool time and RF hours.
- IR Adsorption ideal technique.
 - Doesn't require active plasma.
 - Deployable in filter based technology (low \$).

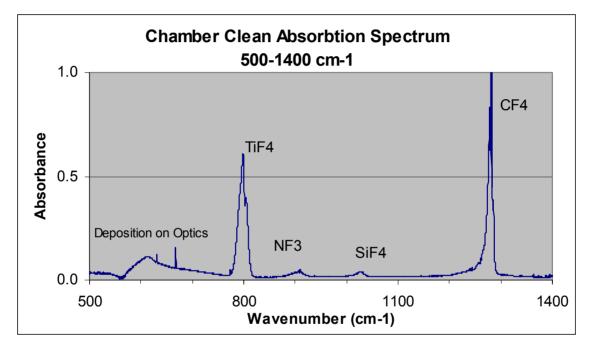
Application Qualification


- Installed MultiGas 2010 in exhaust line.
 - 5.26 meter optics
 - KF-40 fittings
- Used by-pass to maintain conductance.
- Ran at 0.5 cm-1 resolution.
- 15 seconds averaging.


• mks

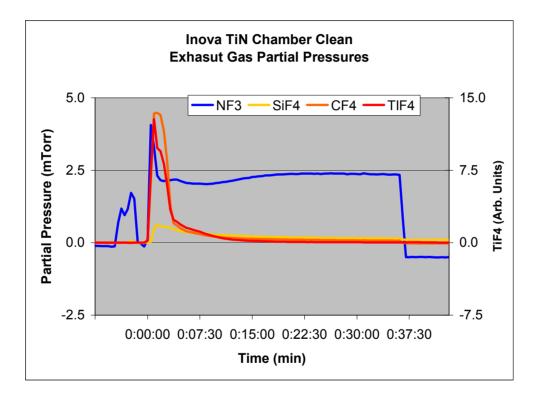
Deposition

- Complex Structure.
 - Not completely characterized.



- Each Wafer Resolved.
 - Need faster update time for fault detection.

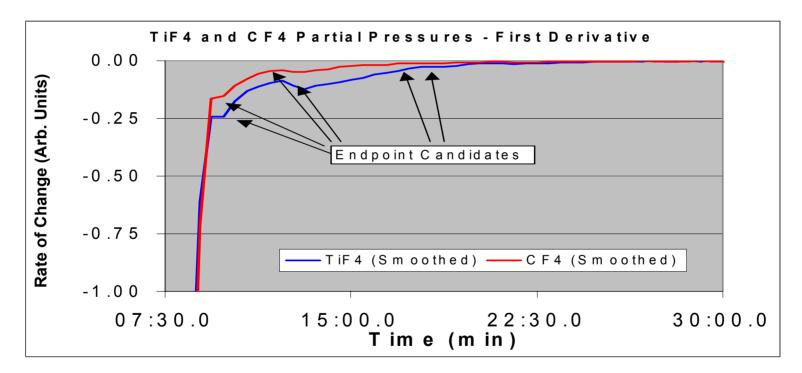
Chamber Clean Chemistry



- All Components Identified:
 - NF₃, TiF₄, CF₄, SiF₄, HF, CO, COF₂

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

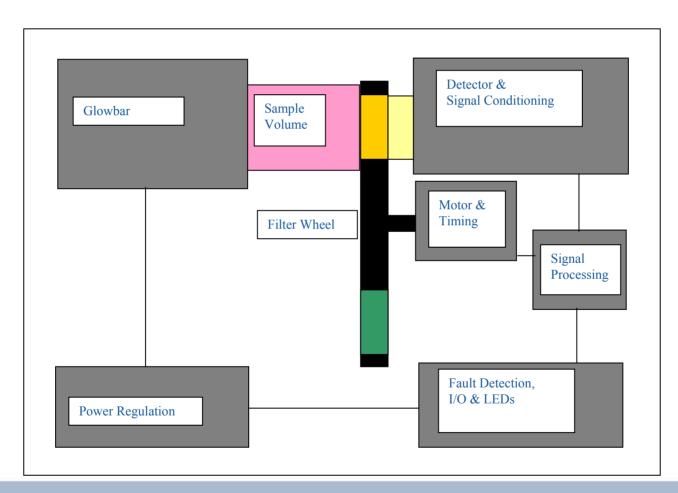
Partial Pressures vs. Time



• TiF₄ and CF₄ both excellent candidates!

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

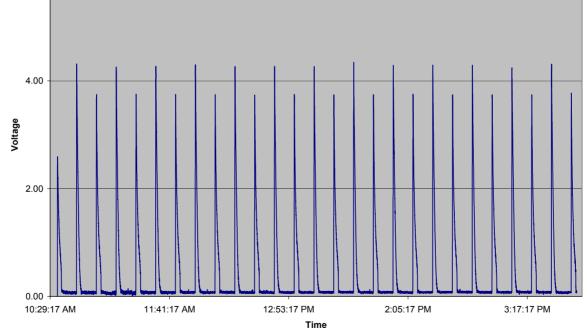
TiF4 and CF4 Partial Pressures First Derivative, again



Several Candidates Identified.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

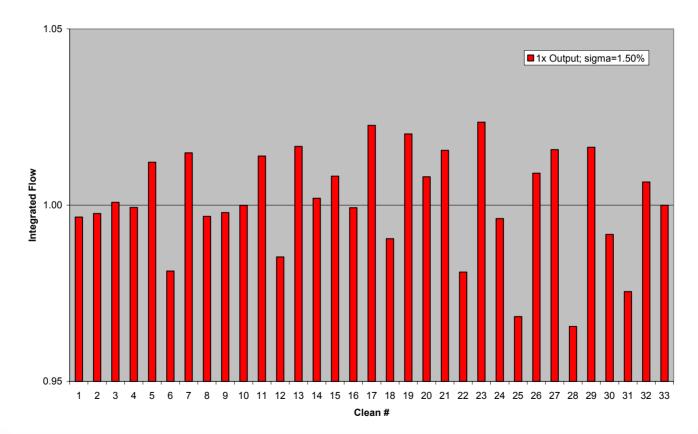
Filter-Based Sensor Theory of Operation



NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Observed Process Variability

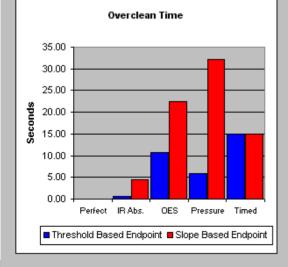
Oxide Chanber Clean

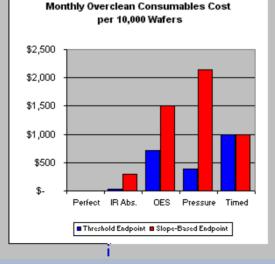

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

6.00

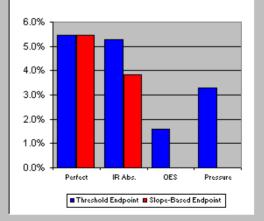
Mass Removal Repeatability

Normalized Flow


NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar


• mks

Benefits


				_	
Overclean Calculator	Perfect	IR Abs.	OES	Pressure	Timed
Value (mV)	5000	5000	5000	5000	n/a
Slope (m∀/s)	1000	125	25	10	n/a
Acceleration (mV/s2)	1000	25	5	2	n/a
Noise (mV)	0	25	25	25	n/a
Sample Rate (Hz)	1	10	10	10	n/a
Smoothing (Samples)	1	10	10	30	n/a
Drift (%)	0.0%	1.0%	5.0%	1.0%	n/a
Threshold Time Budget	0.00	0.53	10.63	5.91	15.00
Slope Time Budget	0.00	4.51	22.54	32.23	15.00

Gas Flow Calculator	Perfect		IR Abs.		OES		Pressure		Timed	
Ideal Clean Time		260		260		260		260		260
Wafers Per Clean		5		5		5		5		5
Wafer Starts Per Month		10,000		10,000		10,000		10,000		10,000
Consumables Cost per Liter	\$	2.00	\$	2.00	\$	2.00	\$	2.00	\$	2.00
Consumables Flow Rate L/Min		1.0		1.0		1.0		1.0		1.0
Threshold Overclean Cost	\$	-	\$	35	\$	709	\$	394	\$	1,000
Slope Overclean Cost	\$	-	\$	301	\$	1,503	\$	2,149	\$	1,000
NF3 Savings Threshold vs Timed		5.5%		5.3%		1.6%		3.3%		0.0%
NF3 Savings Slope vs Timed		5.5%		3.8%		-2.7%		-6.3%		0.0%

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing TeleSeminar

Gas Analysis Conclusions

- IR Spectroscopy can be used everywhere!
 - Feed or Process Gasses, Process Diagnostics, Abatement Characterization, Stack Emission Quantification etc.
- FTIR based instruments are versatile and powerful.
- Filter-based instruments are inexpensive.
 - Application specific sensors can be deployed on every tool.
 - Process Control Strategies using filter based tools can save big \$!

Final Comments

- IR Spectroscopy is here to stay!
 - The new degree of chemical complexity demands it.
- New hardware and software make the technology accessible.
 Don't need a PhD with each analyzer.
- No matter the application, IR can help!
 - Process Diagnostic & Control, Abatement, EH&S, facillities etc.

Thanks to everyone for the opportunity to present!