Update: Brush Scrubbing for Post-CMP Cleaning

Gretchen Burdick, Neil Berman, Stephen Beaudoin Department of Chemical and Materials Engineering Arizona State University, Tempe, AZ

Environmentally-Benign Semiconductor Manufacturing

Existing Manufacturing Processes

New materials

New processes

New Manufacturing Processes

Fundamental science

Process models

Optimal Manufacturing Processes Reduced Waste

Reduced Energy

Benign Waste

Chemical Mechanical Polishing (CMP)

- » Removes a thin surface layer to obtain planar wafers
 - Uses abrasive particles in aqueous solution in conjunction with relative motion between polishing pad and wafer
 - Surface removed mechanically and chemically
- » Introduces contaminants onto wafer surfaces
 - Pieces of polished surface and polishing pad
 - Slurry particles
 - Contamination from the handler or handling device
 - Must be removed before further processing

Post-CMP Cleaning

- » Must remove particles less than 1 micron in diameter
- » Must not roughen wafer surface excessively
- » Brush scrubbing and megasonic cleaning have potential for removing small particles
- » Problems with
 - Resource consumption
 - Lack of understanding of cleaning mechanism
 - Inefficient and unreliable processes

Brush Scrubber

Cleaning Model Objective

Adhesion of Particles to Surfaces – DLVO Theory

 $\kappa = f(I)$

- d = Particle diameter
- a = Contact radius
- h = Particle-surface separation distance
- ϵ = Medium dielectric constant
- ζ = Zeta potential

 κ = Reciprocal double-layer thickness

I = Medium ionic strength

A = System Hamaker constant

Adhesion of Particles to Surfaces – Real Systems

$$F_{A} = F_{vdW}(A, h, E, P, f_{s}, \varepsilon_{s}, \sigma_{s}, f_{p}, \varepsilon_{p}, \sigma_{p}, a, d)$$

- A = System Hamaker constant
- h = Particle-surface separation distance
- E = Elastic modulus
- P = Applied load
- f_s = Fraction of substrate covered by asperities
- ε_s = Average asperity height on substrate
- σ_s = Standard deviation in asperity height on substrate
- $f_p =$ Fraction of particle covered by asperities
- ε_{p} = Average asperity height on particle
- σ_{p} = Standard deviation in asperity height on particle
- a^{P} = Contact radius
- d = Particle diameter

Adhesion Model – Gen 2

- » Predicts adhesive interactions for particles on various surfaces
 - Couples computer simulation with fundamental adhesion model
 - Accounts for particle and surface:
 - > Chemistry
 - > Morphology
 - Mechanical properties
 - > Geometry
- » Validated using experimental investigations of adhesion of alumina particles and polystyrene latex spheres to copper, SiO_2 , and tungsten substrates in a variety of environments
 - Atomic force microscopy (AFM), nanoindentation, and scanning electron microscopy (SEM) techniques applied
 - > Measure force required to remove particles from the substrates
 - Characterize morphology, mechanical properties, and geometry of interacting surfaces
 - Experimental removal forces compared with model predictions
 - Measurements can be used to determine system Hamaker constant
- » Predictive model for particle adhesion established

PSL/H₂O/Silicon Adhesion

Alumina/H₂O/Silicon Adhesion

Substrate, Media Effects: Alumina Adhesion

Removal Force (nN)

Removal Model Objective

Assess mechanism(s) of micron-scale particle removal from semiconductor wafer surfaces using a critical particle Reynolds number approach

- Relate adhesion models to particle removal
- Relate flow characteristics to particle removal
- Develop model for removal processes by combining adhesion and flow models

Removal Model Validation

Use experimental results from Yiantsios and Karabelas, *J. of Colloid and Interface Sci.* **176**, 74-85 (1995), to assess validity of critical particle Reynolds number approach

- Studied detachment of spherical glass particles from a flat glass surface
- Used laminar channel flow over a range of flow rates to remove adhering particles
- Percentage adhering as a function of wall shear stress (τ_w) presented graphically
- System Properties
 - > Fluid: solution of distilled water, HNO₃, and NaNO₃
 - > Particle (mean) diameters: 2, 5, 10, 15 μ m ($\sigma_d \sim 12\%$)

Particle Adhesion/Removal Model

Ζ

Rolling Particle Removal Criteria $\vec{M}_{R}(\vec{M}_{D}, \vec{F}_{D}, \vec{F}_{L}, l_{1}, l_{2}) \ge \vec{M}_{A}(\vec{F}_{A}, l_{2})$

External moment of surface stresses about center of particle

 $M_D \propto d Re_p$

Drag force

 $F_D(Re_p < 1) \propto Re_p$

Lift force

Adhesion force

Vertical lever arm

Horizontal lever arm

 $F_{L} \propto d\frac{du}{dz} \Big|_{\frac{d}{2}} Re_{p}$ $F_{A} \propto Ad$ $I_{1}(d, a, \alpha, \varepsilon_{1})$ $I_{2}(d, I_{1})$

Assessing Particle Removal

- » Removal occurs when $\text{Re}_p(\text{Flow}) \ge \text{Re}_{pc}(\text{Rolling})$ $\text{Re}_p(\text{Flow})$ constant at constant flow rate (for this system)
- » *Ideal system* of smooth, deformable spherical particles of identical radius adhering to a smooth, flat, deformable surface
 - \rightarrow Single adhesion force

 \Rightarrow Single value of Re_{pc}

 \Rightarrow All or none of the adhering particles should be removed

- » *Real system* of deformable particles with non-uniformly distributed roughness and a finite size distribution adhering to a deformable surface with a non-uniform roughness distribution
 - → Multiple adhesion forces and multiple points around which rolling can occur

 \Rightarrow Multiple values of Re_{pc}

 \Rightarrow All, some, or none of the adhering particles can be removed

Adhesion Profile – Ideal System, d = 2 and $15 \mu m$

Effect of Roughness on Re_{pc}

Roughness affects Re_{pc} by affecting

- Adhesion force
- Point around which rolling can occur

Point around which rolling occurs

Length of horizontal and vertical lever arms $(l_1 \text{ and } l_2)$ depend on ε_1

Removal Analysis Procedure

Adhesion Profile – Real System, $d_{mean} = 2 \ \mu m$

Adhesion Profile – Real System, $d_{mean} = 15 \ \mu m$

$$\tau_{\rm w} \propto Q \ ({\rm cm}^{3}/{\rm s})$$

Removal Model Conclusions

- » Accurate particle removal models require accurate particle adhesion models
- » Rolling is the controlling removal mechanism
- » Roughness and particle size distribution affect the point around which rolling can occur
- » (Rolling) theoretical adhesion profiles for real adhesion system in agreement with those of Yiantsios and Karabelas
- » Critical particle Reynolds number approach validated
- Predictive model for particle removal established
 Independent of particle size and cleaning (flow) system

Brush Scrubbing Analysis Objective

Use critical particle Reynolds number (Re_{pc}) approach to assess particle removal from wafer surfaces during brush scrubbing

Typical Operating Conditions

 $\omega_{\rm B} = 200 \text{ rpm } \omega_{\rm w} = 90 \text{ rpm}$ $r_{\rm cc} = 5 \text{ cm } r_{\rm B} = 5.7 \text{ cm}$ Total cleaning time, t: 20 s
Brush Pressure, P_B: 3 psi
Finger diameter, d_f: 0.6 cm
Number of fingers per brush, N_f: 85
Total area covered by fingers: 66,000 cm²

System Properties

Particles: asymmetrical alumina Surfaces: polished silicon dioxide and copper

Brush Scrubbing Analysis Objective, cont'd

- » Assess whether hydrodynamic forces can remove adhering particles from wafer surfaces during brush scrubbing, or whether brush-particle contact must occur
 - Systems of 0.1 and 1.0 µm diameter alumina particles adhering to polished silicon dioxide and copper surfaces considered
 - Two approaches: time-dependent and time-averaged
- » Calculate particle Reynolds numbers as a function of
 - Time (t)
 - Brush radial position (r)
 - Brush-wafer separation distance (D)
 - Brush and wafer angular speed (ω_B and ω_w)
- » Consider the effects of
 - Substrate chemistry
 - Particle and substrate morphology and mechanical properties
 - Geometry of the interacting surfaces
 - Fluid properties
 - Velocity profile near adhering particle

Velocity Profile

- » Two approaches
 - Use time-dependent relative velocity (V_{rel}) to calculate V_p and Re_p
 - Use time-averaged relative velocity (V_{rel}) to calculate V_p and Re_p
- » Calculate boundary layer thickness (δ) on brush finger
 - Determines relationship between V_p , V_{rel} , and D $|\bar{v}| = 1$

• If
$$D \le \delta$$
: $V_p = \frac{|V_{rel}|}{D} \cdot \frac{d}{2}$ $Re_p = \frac{\rho}{\mu} \frac{|V_{rel}|}{D} \cdot \frac{d^2}{2}$

Time-Dependent Velocity Profile

Time-Averaged Velocity Profile

Time-Dependent Boundary Layer Thickness

Time-Averaged Boundary Layer Thickness

System Properties

Particle size (µm)	Contact Radius, a (nm)		
0.1	22.6		
1.0	226		

Parameter	Al ₂ O ₃ Particle	SiO ₂	Cu
Average asperity height, ε (nm)	1.6	1.7	0.8
Standard deviation in asperity height, σ (nm)	0.7	0.7	0.5
Fraction of surface covered in asperities, f	0.33	0.56	0.45
Elastic modulus, E (N/m ²)	5.0x 10 ¹¹	5.6 x 10 ¹¹	7.8 x 10 ¹⁰

Al₂O₃-H₂O-SiO₂ Adhesion Force

1.0 µm alumina particle adhering to polished silicon dioxide in deionized water

Al₂O₃-H₂O-Cu Adhesion Force

1.0 µm alumina particle adhering to copper in deionized water

Al₂O₃-H₂O-SiO₂ Critical Particle Reynolds Number

 $Re_{pcmean} = 0.0010$ $\sigma_{Re} = 0.00048$ $Re_{pcmean} = 0.089$ $\sigma_{Re} = 0.042$

deionized water

deionized water

Al₂O₃-H₂O-Cu Critical Particle Reynolds Number

$$Re_{pcmean} = 0.0096$$

$$\sigma_{Re} = 0.0036$$

 $\begin{aligned} & \text{Re}_{\text{pcmean}} = 0.91 \\ & \sigma_{\text{Re}} = 0.33 \end{aligned}$

Analysis Algorithms

Time-Dependent

Time-Averaged

1. Calculate $|\bar{V}_{rel}(t,r)|$ 2. Calculate $\operatorname{Re}_{p}(V_{rel}(t,r),D)$ 3. Set Re_{pc} distribution, $\operatorname{Re}_{pc}(i) = \operatorname{Re}_{pc}(\operatorname{mean}) + i\sigma$ $(i = 0, \pm 1, \pm 2, \pm 3, \sigma = \operatorname{standard} \operatorname{deviation})$ 4. Calculate the fraction (R) of Re_{p} greater than Re_{pc} over a given interval (σ) using[†] $\operatorname{R}(i,i+1) = \frac{\int_{0}^{t} [(\operatorname{Re}_{p}(t,r,D) - \operatorname{Re}_{pc}(i)) - (\operatorname{Re}_{p}(t,r,D) - \operatorname{Re}_{pc}(i+1))] dt}{\sigma \int_{0}^{t} dt}$

5. Calculate the percentage of particles removed using

% Removed = $\sum_{i} R(i, i+1) \cdot F(i, i+1)$ where F is the frequency (%) from the Re_{pc} distribution 1.Calculate $\overline{V}_{rel}(r)$

2.Calculate $\operatorname{Re}_{p}(V_{rel}(r),D)$

3.Compare Re_{p} with the Re_{pc} distribution and calculate the percentage of particles removed

[†] Integral in numerator calculated only for the time when $\text{Re}_{p} > \text{Re}_{pc}$

Time-Dependent Analysis – Example, r = 2.85 cm

Time-Averaged Analysis – Example, r = 2.85 cm

1.0 µm alumina particle adhering to polished silicon dioxide in deionized water

Silicon Dioxide Removal Profiles, $d = 0.1 \ \mu m$

0.1 μ m alumina particles adhering to polished silicon dioxide in deionized water

Silicon Dioxide Removal Profiles, $d = 1.0 \ \mu m$

Copper Removal Profiles, $d = 0.1 \ \mu m$

0.1 µm alumina particles adhering to copper in deionized water

Copper Removal Profiles, $d = 1.0 \ \mu m$

Brush Scrubbing Analysis Conclusions

- » Under limited conditions (i.e., particle size, brush radial position, and brush-wafer separation distance), the time-averaged analysis predicts almost identical results to the time-dependent analysis
- » Time-averaged analysis predicts that as brush radial position increases and brush-wafer separation distance decreases, the percentage of particles removed increases
- » Time-dependent analysis predicts that as brush-wafer separation distance decreases, the percentage of particles removed increases, but follows no overall trend as a function of brush radial position

Brush Scrubbing Analysis Conclusions, cont'd

- » Based on mechanics alone more particles are expected to be removed from the silicon dioxide surface than from the copper surface since the copper system has a larger Re_{pc} under the same flow conditions
- » In many cases brush-particle contact must occur for complete particle removal
- » Larger particles are more difficult to remove
 - Re_{p} and F_{A} both proportional to d^{2} , therefore contact radius controls the level of difficulty in removing a particle
 - Larger particles, having a larger contact radius, are more difficult to remove since there is more mass interacting at the particle-wafer interface than for smaller particles
 - Re_p must increase proportionally to remove these particles
- » Hydrodynamic particle removal is system dependent

Acknowledgements

- » Financial support provided by:
 - National Science Foundation
 - > CAREER Award
 - > Graduate Research Traineeship Program
 - National Science Foundation/Semiconductor Research Corporation Center for Environmentally-Benign Semiconductor Manufacturing
 - Speedfam-IPEC Corporation
 - SEZ America
- » Technical support provided by:
 - Molecular Imaging Corp.
 - ASU Center for Solid State Electronics Research

