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OUTLINE

• Introduction to alternate gate dielectrics
• Growth of ultra-thin dielectric films by UV-ozone oxidation
• Physical and Electrical Characterization of dielectric stacks
• Structure-Property Relations
• Summary
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ALTERNATE GATE DIELECTRICS FOR CMOS
DEVICES

Need to scale gate dielectric thickness for future CMOS devices
Some issues with SiO2: high leakage current, boron penetration, etc.
Hence, replace SiO2 with higher-k dielectric to get similar electrical
thickness, (EOT) t eq= (t high-k /k high-k)k SiO2

Schulz, Nature, 1999
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Stability of oxides on Si

• Oxides of Zr, Hf, Gd etc. are predicted to be stable directly on Si
(R. Beyers, PhD thesis, Stanford, 1989, Schlom et al. MRS Bull. 2002)
• Necessary to avoid interfacial layer formation, silicidation etc.
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KEY ISSUES IN GATE DIELECTRICS RESEARCH

• Desire alternate gate dielectric with high ε on Si with low
EOT (~ 1 - 1.5 nm)

• Choice of gate dielectric material : ZrO2, HfO2, Gd2O3,
ZrSiOx, HfSiOx, etc.

• Deposition methods : ALD, Sputtering, Oxidation, etc.

• Interfacial layers between high-k and Si

• High temperature stability of dielectric stacks

• Characterizaton methods !
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EOT versus leakage current: SiO2 versus high-k

Gusev et al. Microelec. Eng. 2001
These are crystalline oxides !
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GOALS

• Develop the method of UV-ozone oxidation to grow ultra-
thin metal-oxide films

• Structural and chemical characterization of dielectric
stacks and interfaces at the atomic scale

• Study the relation between oxidation kinetics and electrical
performance
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GROWTH OF THIN METAL-OXIDE FILMS BY 
UV - OZONE OXIDATION

• Sputter metal film on suitable underlayer at R.T.

•Oxidation performed by in-situ exposure of metal film to O2 in presence of UV light

Metal Film

UV Lamp

hvO2

• UV light interacts with oxygen and
leads to  the following reactions:

O2 + hν      2O (λλ = 185 nm)
O + O2      O3

O3 + O      2O2

O3 + hν      O2 + O (λλ = 254 nm)

• No activation energy need for
creation of atomic oxygen
(Adamson, Physical Chemistry of
Surfaces)

2
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STUDYING THE OXIDATION KINETICS

• Use 16O (d,αα) 14N nuclear reaction to investigate
oxygen concentration in the sample

• Sensitive to sub-monolayer of oxygen, can calculate
oxide thickness with high accuracy1

Detector

ααout

Din

Ein (x)

θθ in

θθ out

Sample

1. Turos et al., NIM B, 111 (1973), 605

Tesmer and Nastasi, Handbook of
Ion Beam Analysis
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Quantitative analysis of oxygen concentration difficult ! 

Oxygen feature
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BACKSCATTERED SPECTRUM

• Oxygen peak well separated from Rutherford backscattered peaks

• Oxygen concentration (in at/cm2) can be calculated from the
integrated peak area for 16O (d,αα) 14N reaction

Film Structure
Spectrum
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(Nt)SiO2 = 9.8 x 1014 at./cm2

Calc. physical thickness ~ 2 Å

NRA Oxide Thickness Measurements contd.

Si

PtHF-last Si

Si

ZrO2
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OXIDATION KINETICS OF Al and Zr FILMS

• Oxidation rate significantly higher compared to natural oxidation for both Zr and
Al films
• Self-limiting oxide growth for ozone oxidation at low pressures
• Room temperature oxidation leads to crystalline ZrO2
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Interfacial Roughness: an important consideration !

F.H. Baumann, D.A. Muller
et al., MRS, 2000)

Image simulations
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MICROSTRUCTURAL STUDIES

High-Resolution TEM: Phase Contrast
Scanning Transmission Electron Microscopy: Z-Contrast
Electron Energy Loss Spectroscopy: Chemical and Electronic
Structure Information (at high spatial resolution)
X-ray Absorption Spectroscopy: Chemical and Electronic
Structure Information (at high energy resolution)

c c

Roughness Transition layerInterdiffused Region

Underlayer

Oxide film

~ 5-10Å

Need to characterize:
• Atomic scale roughness (~ 5-10Å)
• Sub-stoichiometric / Reaction layers (~ 5 - 10Å)
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SCANNING TRANSMISSION ELECTRON MICROSCOPY
(STEM)

• Convergent beam of electrons incident
on sample

• Probe size is of the order of 2-3Å (in
JEOL 2010F, Lucent)

• Beam is rastered across sample to form
image

• Annular dark field (ADF) imaging
conditions lead to Z-contrast

• Structural information can be obtained
from local (< 2 nm) regions using nano-
diffraction
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• BF and ADF STEM images showing polycrystalline ZrO2 grown on SiON by
ozone oxidation at room temperature
• The interface between the Si and SiOxNy is atomically sharp
• The interface between the SiOxNy and ZrO2 is however slightly diffuse

25Å 25Å
Si

SiON

ZrO2

MICROSTRUCTURE OF AS-DEPOSITED ZrO2 FILMS

BF Image ADF Image
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ELECTRON ENERGY LOSS SPECTROSCOPY
(EELS)

• Analysis of energy distribution of
electrons that have undergone inelastic
collisions in the sample

• Chemical mapping across an interface
possible with sub-nanometer resolution

• Can probe electronic structure of the
material locally (Muller et al., Nature,
1999)
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Is Drain 
Current

Sample

Is ~ Io µ (hν)

Io

X-RAY ABSORPTION SPECTROSCOPY
(XAS)

• Monochromatic photon beam incident on sample in an UHV chamber (BL 10-1,
SSRL)
• Absorption is measured as a function of photon energy (TEY mode)
• Shape of absorption peak reflects the unoccupied density of states similar to EELS
• Higher energy resolution than EELS, however spatial resolution is less

hv

Luning ,2000
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XAS AND EELS OF UVO ZRO2

• EELS and XAS spectra match well with measured spectrum for bulk
tetragonal ZrO2 (McComb, Phy. Rev. B, 1996, Chen, Surf. Sci. 1997)
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EECTRICAL STUDIES ON ZrO2 FILMS

• Discuss C-V characteristics of ZrO2 films grown by
ozone oxidation

• Effect of annealing ambient
• Effect of underlayer :

1. Chemical oxide
2. UV-Ozone grown SiO2

• Effect of oxygen partial pressure
• Hysteresis and frequency dispersion
• Effect of oxidation time
• Effect of UV light
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THICKNESS EXTRACTION FROM C-V CURVES
MEASURED FROM ULTRA-THIN DIELECTRICS

Effect of series resistance
- can decrease the accumulation
capacitance

Quantum mechanical corrections
- up to 30% discrepancy in the various
QM simulators available (Richter et al.
Elec. Dev. Lett. 2001)

EOT measured at a certain voltage in
accumulation
(at -2 V in our work presented below)

Henson et al. Elec. Dev. Lett. 1999
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Related references: Depas et al., Sol. St. Elec. 1994, Nicollian and
Brews, MOS textbook, 1982
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ZrOx grown by Natural Oxidation : No UV light

ZrOx

SiO2

Pt electrode

Si
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teq = 35 Å
0

20

40

60

80

100

120

140

160

-2 -1.5 -1 -0.5 0 0.5 1

100KHz
500KHz
1MHz

C
ap

ac
it

an
ce

 (
pF

)

Volt (V)

EOT = 4 Å at 100 KHZ
EOT = 35 Å at 1 MHz !

Intentionally grew sub-stoichiometric zirconia to study CV behavior
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QUANTITATIVE EELS ANALYSIS

530 540 550
0

0.1

0.2

0.3

Energy Loss (eV)
00.51

0

1

2

3

4

5

6

 SiO
2

"ZrO"

 ZrO
2

Composition

D
is

ta
nc

e 
(n

m
)

(b)

c-Si

Pt

ZrOx

SiO2

SiO2

ZrO2

“ZrO”

1 nm (a) (c)

• Quantitative analysis of EELS O-K fine structure detects additional sub-
stoichiometric ZrO phase (Ramanathan et al. Philos. Mag. Lett. accepted, April 2002)

D. Muller
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XAS studies on zirconia

Acknowledgement: Jan Luning, Prof. Pianetta, SSRL

• Note absence of fine structure in the ZrOx case: due to reduced number of
oxygen nearest neighbors (D. Wallis, PhD Thesis, Cambridge, 1996)

Ramanathan et al. Philosophical Magazine Letters, 2002
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Maxwell-Wagner-Sillars Interfacial Polarization

ε1, σ1

ε2, σ2

d1

d2

d

References: Von Hippel, Dielectrics and Waves, 1954

Model for ZrO2 / Zr system, 
q is volume fraction of
 Zr metal inclusions

Maxwell, 1892
Wagner, 1924 Sillars, 1937

ZrO2

Zr

Zr

Zr

Well-studied in ceramics, has been observed in
several studies on layered ceramics

Ramanathan et al. JAP, 91, 4521,2002
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• As measurement frequency decreases, the measured dielectric constant
increases due to polarization effects
• Similar frequency dependence has been observed in under-oxidized ZrOx (Jeon
and Hwang, JECS, 2002, Stemmer, JAP, 2002)

q = volume fraction
of Zr metal
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ZrO2 / SiO2 GATE STACK GROWN in-situ BY UV-
OZONE OXIDATION at 300 ºK

HF last (001) Si

Experiment

UVO SiO2

UVO ZrO2

Pt cap

Patterned
Capacitors

Probe
Station

Acknowledgement: Dr. Chang Man Park
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Effect of oxygen partial pressure on Zr oxidation 

600 Torr, 60 minutes 80 mTorr, 60 minutes

• Oxygen partial pressure crucial to growing stoichiometric zirconia films
• Electrical results in good agreement with oxidation kinetics data
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SUMMARY

• Systematic studies of UVO grown zirconia has been performed

• Dielectric stacks with 1.5 nm EOT (QM corrected EOT ~ 1.1
nm), low leakage current, low hysteresis and dispersion have been
fabricated

•Scanning transmission electron microscopy coupled with EELS
and XAS has been used to understand the correlation between the
electrical and structural properties

• UVO SiO2 films have been found to be promising templates to
grow high-k dielectrics


