

Supercritical CO₂ in Microelectronics Processing

Gina L. Weibel, Victor Q. Pham, Peter Nguyen, Christopher K. Ober

Dept of Materials Science & Engineering, Cornell University, Ithaca NY 14850

Outline

CO₂ Cleaning

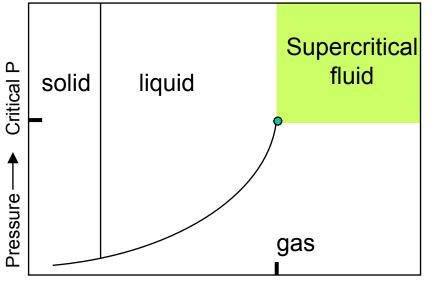
CO₂ as a solvent Modeling cleaning dynamics Commercial systems

CO₂ Photoresist Technologies

Interactions of CO₂/ polymers Commercial systems

Other Microelectronics Processing Technologies

Dielectric materials/ metals/ etching & more


Ober Group Equipment & Capabilities

Co-solvent processing

The Supercritical State

Phase Diagram of CO₂

Temperature — Critical T

CORNELI

Supercritical Conditions

•31 °C or higher •73.5 bar (1070 psi to 5000 psi) •Density 200 to 950 g/l •High & variable density Scales with P and T

- •Transport > liquid Improves contaminant removal
- •Viscosity comparable to gas *Penetrates crevices*
- •Tunable solvating power Varies with T, ρ, cosolvent
- •Low surface tension Penetrates and flows

Supercritical Fluid CO₂ Cleaning

Supercritical fluids can:

Dissolve organic compounds with mid to low volatility

- If low MW materials are soluble in hexane, they are likely soluble in CO₂
- Many pure compound solubility studies are available for reference
- Solvent power increases as density increases
- T can increase dissolution (above 350 bar)
 - -increase vapor P of solute

-increase contaminant desorption

• Solubility is affected by other compounds, cosolvents or contaminants

Loosen adhered particles

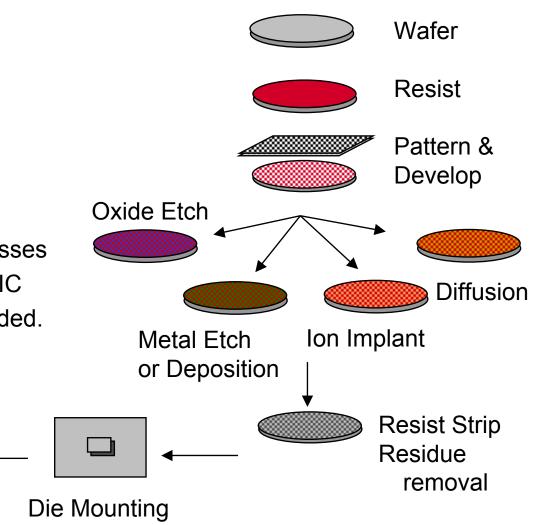
CORNELL

- Mechanical shear forces are created by CO₂ flow
- Studies on dynamics of particle removal at high P or in SCF are available

Provide better technical results

- Prevent chemical damage to substrate or features
- Prevent pattern collapse or mechanical damage
 Prevent environmental waste

Cleaning at Multiple Points


IC process cleaning points:

- Pre-resist particle removal
- Post oxide etch
- Post metal etch
- Post ion implant
- Damascene process steps

Impact:

- Particle / residue removal processes are repeated multiple times per IC
- Cost/ time for clean is compounded.

Encapsulating

Traditional Cleaning Methods

Common Methods:

- Ultrasonic clean
- High-pressure jet scrubbing
- Plasma ashing
- Wet chemical stripping

Impact:

- Combination of **chemical/ physical** equipment usually required (& can *damage* material)
- Aqueous methods require long drying, water usage, flash rusting
- Cleaning and waste expenses are high
- Environmental impact is high
- SCF clean can reduce number of process steps

Cosolvent Addition

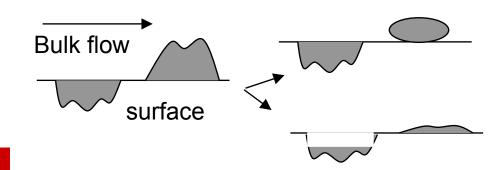
An excellent way to lower stringent solubility requirements:

- Liquid cosolvent increases density; reduces free volume difference between contaminant (polymer) and SCF
- Cosolvent can provide polar interactions or H-bonding to expand region of miscibility

But:

- Too much cosolvent added can lead to cosolvent-cosolvent bonding that reduces polymer miscibility
- Phase diagrams for mixed -solvent systems are more complex: supercritical and liquid phases coexist or separate liquids and vapors become partially supercritical.

Solvent	Nonpolar component	Polar component	Solubility Parameter
Methanol	7.4	6.0	13.4
IPA	7.7	3.0	10.7
Hexane	7.2	0	7.2
CO ₂	7.2	0	7.2


Dynamics of SCF Cleaning

Theory and Experimental Results

- Contaminant removal was modeled based on partitioning phenomena
- SCF can penetrate high aspect ratio vias/trenches
- Boundary layer can be minimized by flow, turbulent mixing, or compression cycles

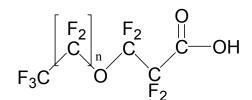
Incomplete Cleaning

- Incomplete cleaning may occur when surface interactions dominate.
- It is important to optimize P, T, cosolvent and flow simultaneously
- Small samples may not benefit from effect of mixing
- D_L may be the limiting component and unaided by SCF characteristics

High intramolecular attraction, not sufficiently soluble

 $P_{SL} > P_{LF}$, sorption to substrate

Reverse Microemulsions


Objectives

- Can dissolve polar or ionic species
- Adds a 2nd solvent environment
- Is an alternative (& lower volatility than) to cosolvents
- Final wash with pure CO₂ removes residues

Accomplishments

- Molecules generally have low polarizability (F containing) & lewis bases for solubility
- Rigid fluoro-chains, double-tails prevent micelle coalescense
- Water : surfactant ratio is a parameter to tune

Water as counterions

Fluoroether carboxylate

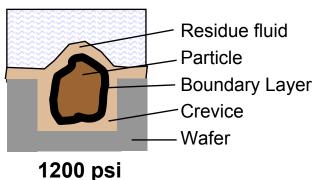
Water for dissolution

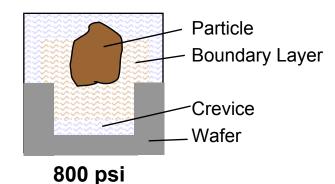
Twin non-polar tails

Supercritical CO₂ Resist Strip

Los Alamos National Lab/ Hewlett Packard - Craig Taylor Supercritical Systems (Tokyo Electronic) - M. Biberger SC Fluids, Inc (GT Equipment Tech.) - David Mount

IBM - McCullough


Objectives:

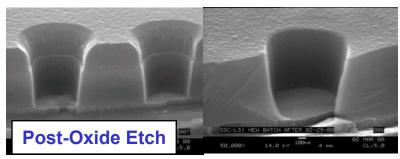

CORNELL

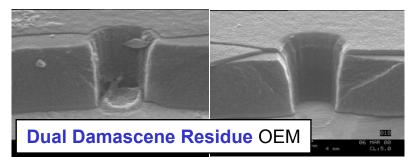
- Eliminate water & waste of wet-stripping
- Shorten strip time, lower costs, one tool only
- Provide cleaning alternative for water or temperature sensitive materials

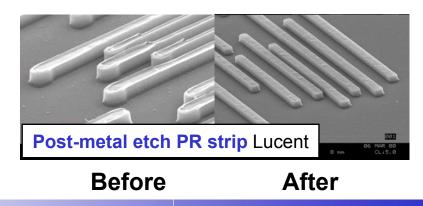
Accomplishments:

- Organic contaminants removed without altering substrate surface (proven successful post oxide or metal etch)
- CO₂ with 0.5% to 1% cosolvent
- Pulsed flow system and/or low viscosity of SCF for effective particle removal
- Final rinsing in pure CO₂ removes any residue
- Dry-in/ dry-out is modular with CVD or etch tools

pulse flow particle removal


Schumacher, S&K Products


Supercritical CO₂ Resist Strip


Supercritical Systems (Tokyo Electronic) - M. Biberger

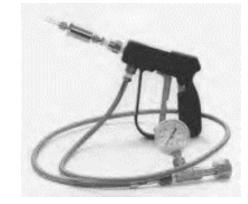
Accomplishments:

- Successful resist removal post oxide etch
- Successful residue removal in dual damascene process
- Resist removal post-metal etch does not damage underlying structure
- XPS spectra confirm residue removal
- FTIR/ AFM of low-k materials indicate no structural or chemical changes (except drying) = SiLK
- If diffusion of CO₂ from porous low-k is too slow, surface structure indicates swelling

CORNELL

CO₂ Snow Cleaning

Applied Surface Technologies, Eco-Snow, Va-Tran, Millenium Automation www.co2clean.com


Objectives:

Cornell

- Based upon the expansion of either liquid or gaseous carbon dioxide through an orifice
- Small dry ice particles and a high velocity gas carrier stream for mechanical particle removal

Accomplishments:

- Nondestructive, nonabrasive, residue-free, no chemical waste
- Micron and submicron particles are removed by momentum transfer
- Hydrocarbon contaminants removed by freeze fracture mechanism or via transient solvent
- Multiple commercially available systems

http://www.ecosnow.com/

Resist Technologies go Green

Cornell

CO₂/Polymer Interactions

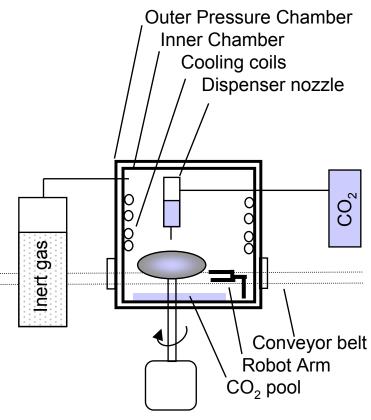
Polymers undergo CO₂ sorption and swell:

- lowers T_g, plasticizes
- induces crystallization
- increases T_m
- accelerates absorption of small molecules that desorb slower than CO₂

Dissolution of and into polymers occurs simultaneously:

- Only amorphous regions of polymer dissolve (COOR, CN, Ph-O) in moderation can increase solubility
- Amorphous samples can be impregnated with components
- Crystalline polymers can safely be cleaned
- SCF can dissolve, then form bubbles

NO universal predictive approach exists for solubility


Photoresist Deposition

DeSimone, U. North Carolina

- Traditional spin-coating requires large volumes of VOCs and aqueous solvents
 Withdrawal coating (dip-coating):
- Dip-coat from liquid or SCF CO₂
- Application of shear force or surfactants allows deposition of CO₂ insoluble polymers
- First phase may be a liquid melt of a polymer, swollen with CO₂
- Batch or continuous coating can be used
- CO₂ Spin coating:

CORNELI

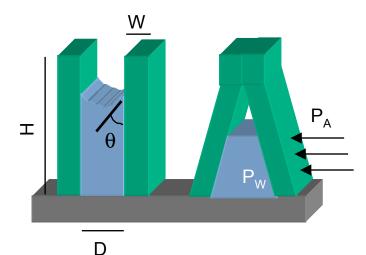
- Deposit possibly: photoresist, antireflective coating, dielectric, adhesion promoter, etc.
- Pressure in chamber 5,000 10,000 psi
- Temperature -20°C to -50 °C
- CO₂ may contain viscosity modifier, surface tension modifer, or slower-evaporating cosolvent

Turntable motor & vacuum

Preventing Pattern Collapse

Collapse = bending, fracture or peeling due to capillary forces **Capillary forces** = $P_A - P_W$: arise from difference in surface pressure

Prevention Strategies:


- strengthen resist (post-pattern crosslink)
- lower surface tension (low tension solvent)
- avoid L/V interface (use SC Fluid or freeze dry)

Results:

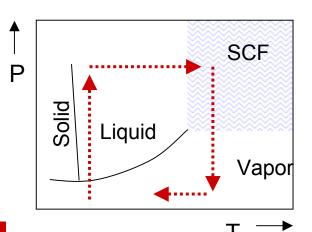
- Aspect ratios > 6.8 obtained
- EtOH rinsed resists easily SCCO₂ dried
- H₂O is not easily replaced directly with CO₂
- H₂O rinsed resists are n-hexane (surfactant) rinsed before CO₂
- H₂O rinsed resists are directly replaced with liq. CO₂ + surfactant

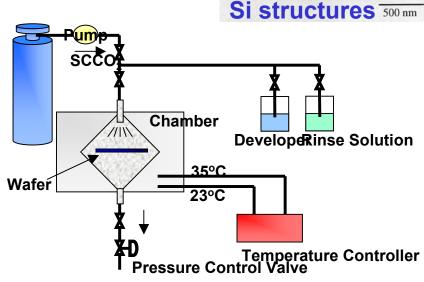
 $σ_{crit}$ = 6γcosθ/ D * (H/W)²

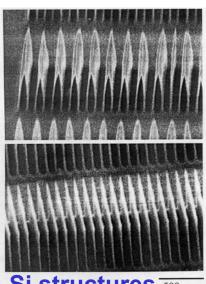
Collapse occurs most frequently at high aspect ratios, narrow spacing

Cornell

SC CO₂ Resist Drying


NTT Laboratories - H. Namatsu, H. Ikutsu U. Wisconsin - D. Goldfarb


Objectives


- CO₂ exchange displaces water or polar solvents
- No phase interface eliminate capillary forces
- Single chamber development & drying of resists
- Prevent distortions of polymer via H₂O sorption

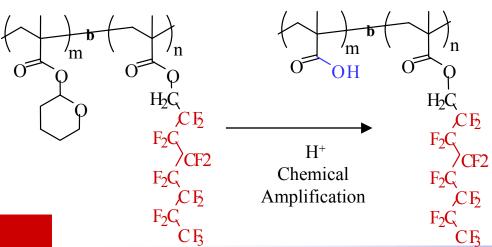
Accomplishments

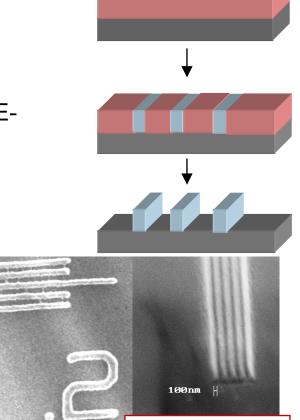
- N₂/ CO₂ combination used
- Teflon lined chamber to prevent condensation
- Inject SC CO₂ to prevent water vapor

Corneli

SC CO₂ Resist Development

Cornell University


N. Sundararajan, G. Weibel, V. Pham, C.K. Ober


Objectives

- Direct development in SC CO₂ no cosolvent
- Prevent pattern collapse with no extra drying steps

Accomplishments

- Negative-tone fluorinated resists patterned 193 nm & Ebeam
- Current work to optimize development conditions and produce **positive-tone imaging**

.10 µ line/space

Microelectronics Processing Technologies

Attributes of SCF are the impetus for novel technologies that invite creation of *replacement* processing steps, rather than *modification* of existing steps.

These may take longer to implement than cleaning or drying

- fewer case studies available
- fundamental studies underway
- few or no commercial manufacturers

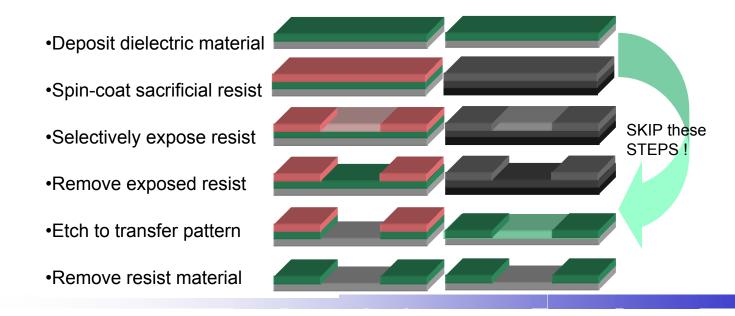
These may offer long-term advantages

- lower cost (though high capital cost?)
- less waste/ chemical usage
- environmental compliance

CORNELI

new technological capabilities

Directly-Patternable Low-κ Dielectric


MIT, Cornell University H. Pryce Lewis, G. Weibel, C. Ober, K. Gleason

Method:

- Fluorinated low-k materials are CVD deposited
- E-beam patterning for small (0.5 μm) features
- Development in SCCO₂

Results:

- Directly patternable low-κ material
- Sacrificial photoresist is eliminated
- TMAH developer is eliminated.

Formation of Low-κ Materials

Farrar - Micron Technology

Objective:

CORNELI

- Reduce capacitive coupling between metal lines by providing lowest dielectric constant
- Incorporation of air into matrix $\varepsilon_0 = 1.0$
- Silica Xerogel absorbs water, stress & metalline rupture occur

Foamed Insulating Polymers:

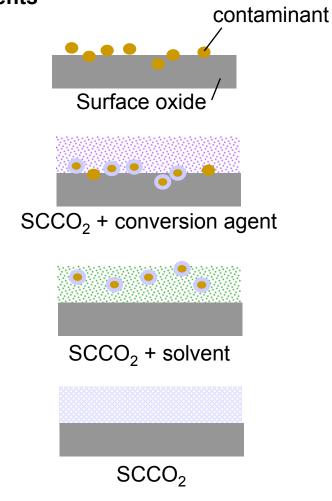
- Dielectric constant 1.2 1.8
- Metallization processing steps only are currently low enough for polymer stability
- Polyimides and fluorinated polyimides may withstand high temperatures & foam in CO₂

Metal Contamination Removal

Muscat - ERC- U. Arizona Douglas - Texas Instruments

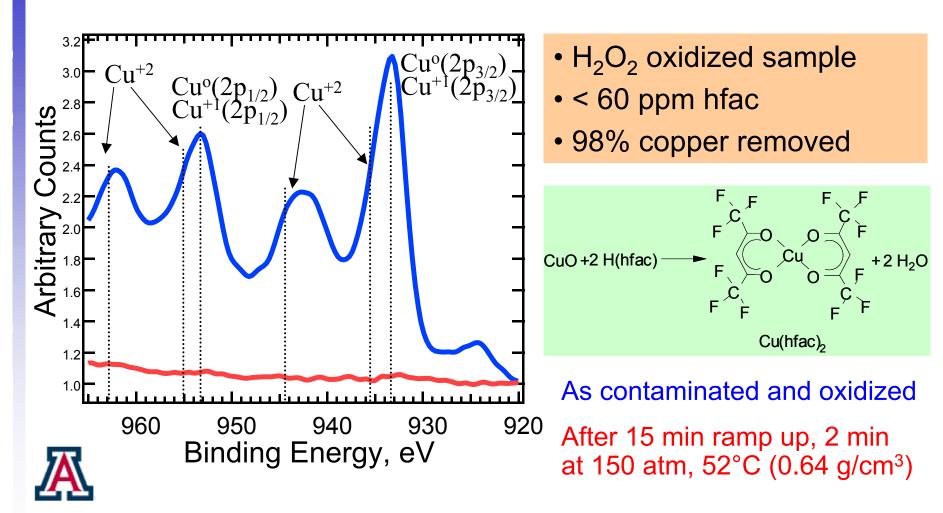
Conventional Metal Removal:

- · Wet acidic process may add particles
- Wet oxidant process may add metals
- Wet chemicals are expensive/ unable to clean high aspect ratio features


CO₂ Metal Removal:

- Metal ions alone are not soluble
- Chelating agents / fluorinated chelating agents
- Modification agents (acid, base, ligand, halogencontaining)
- Solvent agents (polar or non-polar, surfactants, detergent)

Results:


CORNELI

 Cu, when oxidized by Cl to Cu(II) was significantly removed by complexing with H(hfac) in supercritical CO₂

Chelator/scCO₂ Removes Oxidized Copper

Bo Xie, Casey Finstad, and Anthony Muscat/University of Arizona

CORNELL

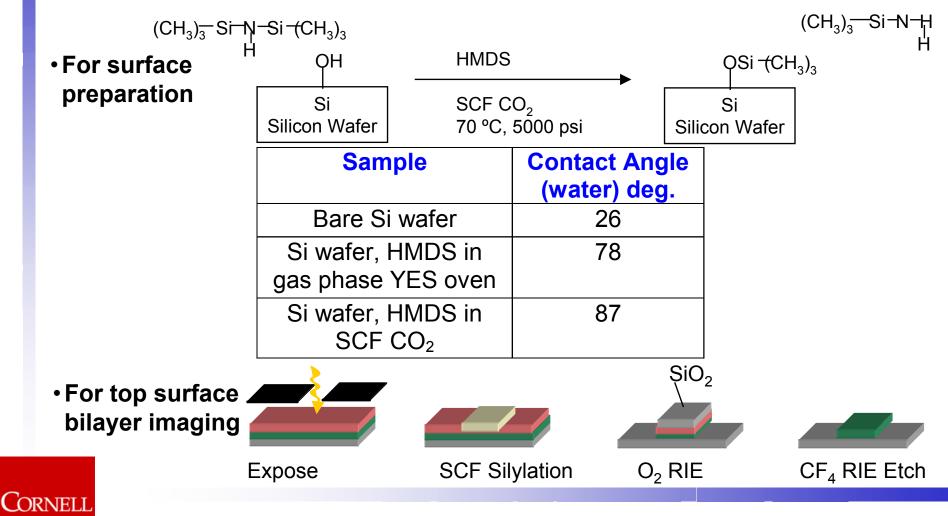
Supercritical Fluid Etching

Vaarstra- Micron Technology

Wet etchants for inorganic materials:

- High throughput and selectivity
- Isotropic

CORNELI


- Incomplete wetting may occur
- Incomplete removal of etched material
- · Harsh chemicals/ requires drying

SCF Etching:

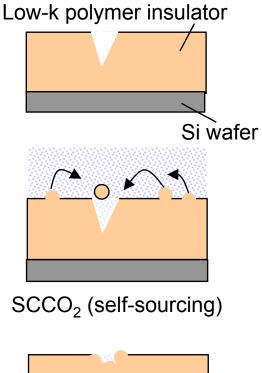
- One SC component (CO2) + one etchant (HNO3)
- Tailor composition to avoid resist stripping
- A SC component that etches (NH3)
- Improved uniformity and wetting
- No drying step required

Supercritical Silylation

C. Cao, T.J. McCarthy - U. Massachusetts

CO₂ Surface Repair

Boggs - IBM


CMP or planarization cause scratches:

- Scratches are polished down (ineffective for deep scratches)
- Surface T increased to cause melt & flow (only on insulators with low T_m)

Supercritical Surface Repair:

CORNELI

- Divots, pinholes have high surface energy
- SCF allows polymer mobility to defect sites (polymer insulators)
- Polyimide, F-polymers, parylene, polyamides, polysulfones mobile at supercritical conditions
- SCF ammonia for SiO₂, Si₃N₄ fill materials

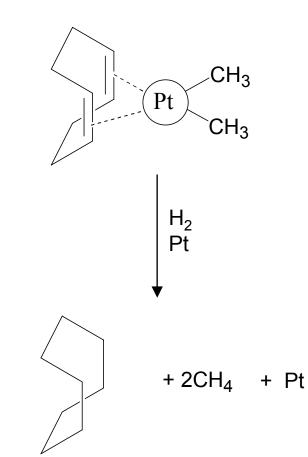
Repaired surface

Chemical Fluid Deposition

James Watkins, U. Massachusetts

Chemical Vapor Deposition

- High purity, conformal coverageLimited by precursor vapor P
- •Requires high deposition T
- Incompatible with thermally labile substrates


Electroless Deposition/ aqueous plating

- •Low T, numerous precursors
- •Poor control of deposition, non-uniform
- •Immiscible with reducers (H₂)

Chemical Fluid Deposition

CORNELL

- •Chemical or thermal reduction of organometallics
- •Low-T, higher reagent concentrations at surface
- •Conformal coverage, good transport of ligand
- •Reduction chemistry must proceed readily at low T
- •Pt, Pd, Au, Rh deposited on patterned Si, PTFE, polyimide, microporous aluminum oxide

Pt film for corrosion-resistant contacts

Incorporation Into Processing

Roadblocks:

- Requirement for additives/ cosolvents deter potential users
- Economics of SCF technologies may contribute to slow rate of adoption
- Delay in mass manufacturing of SCF systems keeps prices high
- Batch process is less favorable than continuous process
- Lack of awareness of SCCO₂ capabilities

Motivators:

- As industry changes to new wafer size and new dielectric and new Cu process, *this is a natural time to introduce new tools*
- Dry-in, dry-out means the tools can be modular with other tools
- Superior technological results with intricate and water/ heat sensitive samples

Conclusion

- Properties of supercritical fluids have been the impetus for several modifications of and replacements for semiconductor processing steps
- Supercritical CO₂ cleaning is feasible and will likely be the first supercritical technology adopted by semiconductor fabs imminently
- Technological advantages of SCF for photoresist processing will hasten the use of CO₂ in lithography
- Novel research of new microelectronics technologies has introduced a host of new materials capabilities and new processing options to meet the long-term challenges of the industry
- Several companies have been born of new technologies supercritical fluids have graduated from *academic curiosity* to *commercial applications*

Outline

CO₂ Cleaning

CO₂ as a solvent Modeling cleaning dynamics Commercial systems

CO₂ Photoresist Technologies

Interactions of CO₂/ polymers Commercial systems

Other Microelectronics Processing Technologies

Dielectric materials/ metals/ etching & more

Ober Group Equipment & Capabilities

Co-solvent processing

Equipment/Instrumentation

CO2 source: pressurized liquid tank

Pump: Liquid pump - chiller or dip-tubes

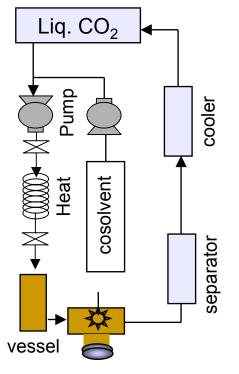
HPLC pump and mixing lines for cosolvents

Oven: Digital controller

High pressure vessel(s): Interior Teflon lining

Pressure fluctuating diaphragm Stir plate or paddle

Window: Cloud-point (solubility) Determination


Dissolution-rate monitoring Small Angle X-ray Spectroscopy Light scattering Raman spectroscopy Fluorescense spectroscopy

Output: Micrometering flow valves Gas Chromatography Mass Spectrometry Recollection solvents or filters

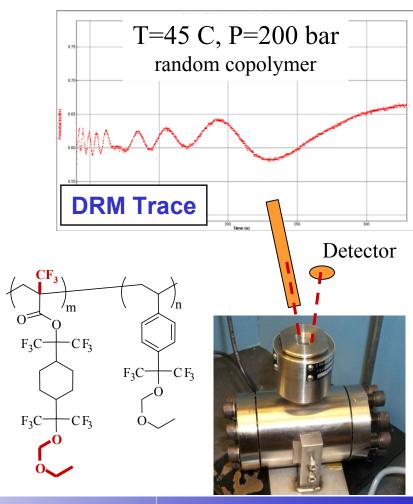
CORNELL

ERC for Environmentally Benign Semiconductor Manufacturing Slide 31

Process chamber

SC CO₂ Resist Optimization

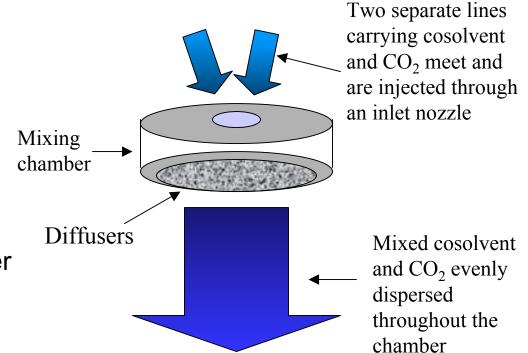
Cornell University V. Pham, G. Weibel, C.K. Ober


Objectives

- Provide means for optimizing development
- Construct a window to the high-P cell

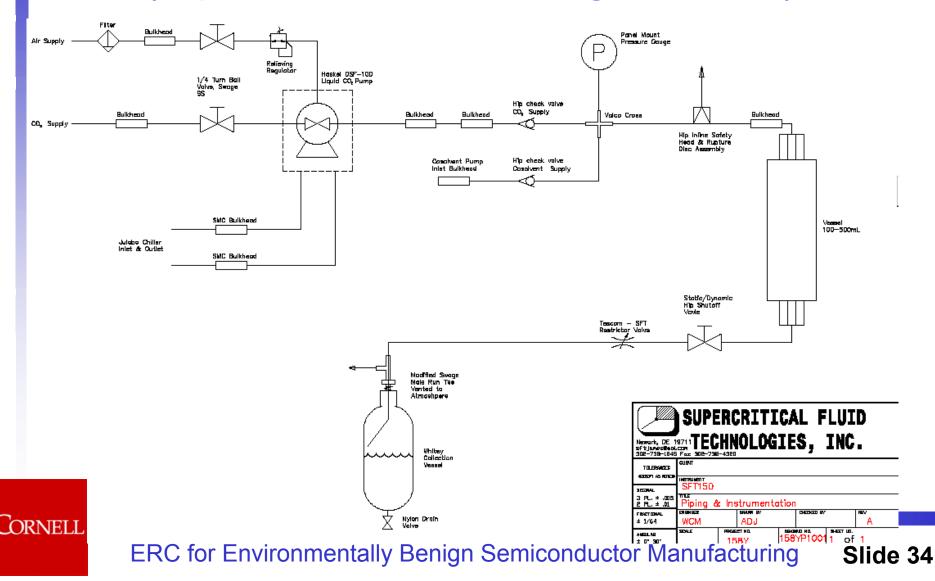
Accomplishments

- A laser interferometric DRM was built
- Dissolution behaviors of block vs. random fluorinated copolymers were studied
- DRM will aid in determining optimized conditions for resist development
- 157 nm fluorinated resists slightly modified for SCF CO₂ development


157 nm resist

Mixing of Cosolvents in SCCO₂ Vessel

- Total system pressurization (Mayer et al., 2002)
- Two-step addition (Ke et al., 1997)
- Stirrers
- HPLC pump addition (Ober group system)
- Diffusers inside the chamber (Ober group system)



An illustration of the custom SFT-150 inlet diffusion 'mesh'.

CORNELL

Schematic of the SCCO₂ System Ober Group - Cornell

(Supercritical Fluid Technologies SFT-150)

SCCO₂ System Capabilities

System

- Vessel size: 100 mL
- Maximum operating pressure: 10,000 psi.
- Flow rates: 1 to 250 grams/min.
 (2 to 500 mL/min.) liquid CO2
 (under standard operating conditions).
- Temperature range: Ambient to approximately 573 K. Accuracy within +/- 0.5 K.

Supercritical Fluid Technologies SFT-150

SCCO₂ System Capabilities II

Temperature Control:

- Single resistive temperature device (RTD) located inside the processing chamber for maximum temperature sensitivity.
- An internal temperature controller prevents lags in feedback from heat transfer issues.

Pressure Control:

• An air regulator at the inlet of the system controls the pressure.

Cosolvent Injection

• A micrometer allows precise control over the amount of solvent injected

Expanding Projects at Cornell

- Understand physical/chemical interactions between surface adherents and supercritical fluid carbon dioxide for better cleaning
- Investigate thermodynamics of polymer/cosolvent solubility
- Experiment with new ESH cosolvents to improve the cleaning, development process
- Optimize techniques to reduce processing time, costs
- Determine economics of development with supercritical CO₂

Acknowledgements

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing

> Cornell Nanofabrication Facility (CNF) Cornell Center for Materials Research (CCMR) Semiconductor Research Corporation (SRC) National Science Foundation (NSF) Companies and researchers referenced herein

