Investigation of Copper Impurities on Silicon Surfaces using X-ray Absorption Near Edge Spectroscopy and Total Reflection X-ray Fluorescence

<u>Andy Singh</u>, Katharina Baur, Sean Brennan, Takayuki Homma¹, Nobuhiro Kubo¹, and Piero Pianetta

Stanford Synchrotron Radiation Laboratory, Menlo Park, CA 94025

¹Waseda University, Shinjuku, Tokyo, Japan

Funded by Department of Energy, SIWEDS

Motivation: Why Cu on Silicon?

Device degradation

•Cu recently introduced for interconnects

•Cu is a fast diffuser in Silicon

•Contamination Levels ~ 10⁹ atoms/cm²

Electrochemistry

- •Understand electrochemical nucleation and growth
- Improve silicon cleaning technology

Reaction pathways

Low pH - reductive

$$Cu^{2+} + e_{Si} \longrightarrow Cu^{1+}$$
$$Cu^{1+} + e_{Si} \longrightarrow Cu^{0}$$

Metallic clusters

High pH - oxidative

 $Si + 2OH^{-} \longrightarrow SiO_2 + H_2$

Metal incorporated into oxide

In ultra pure water (UPW)?

•Deposition influenced by O_2 content, light, defects, etc.

Silicon Wafer surface analysis techniques

X-ray absorption Near Edge Spectroscopy (XANES)

- Incident beam energy scanned through an absorption edge of interest
- Determines chemical state (i.e. oxidation state) of impurities

Total Reflection X-ray Fluorescence (TXRF)

- Incident beam at constant energy
- Useful for determining concentration
- Angle scans can probe location of impurities

Experimental setup at SSRL

TXRF end station at BL 6.2

Wafer handling robot

Total Reflection X-ray Fluorescence

Silicon wafer w/ impurities

- •Grazing incidence geometry ($\alpha \sim .10$ degrees)
- •High surface sensitivity (30 angstroms)
- •Determines concentration of impurities
- •Detection Limit is 8E7 atoms/cm² (i.e. 1 atom in 10 million)

Sample preparation

Wafer:	p-type Si (100) (9-18 Ωcm)
Pre-cleaning:	$H_2SO_4: H_2O_2 = 4:1$ (120°C, 10 min) 0.5% HF (1min)
Metal source:	$Cu(NO_3)_2 \qquad (10 \text{ ppt} \rightarrow 500 \text{ ppb})$
Ultra Pure Water:	Milli – Q (18 M Ω)
Dissolved oxygen control:	UPW _{deox} : 0.3 ppm UPW: 3.4 ppm

Effect of dissolved oxygen on Cu deposition

- Background consists of scatter in the high energy region and bremsstrahlung in the low energy region
- Concentration determined with a known standard

Trace contamination from Cu spiked UPW

*After 5 min immersion

Schematic model for Cu species on Si Wafer

Energy (keV)

- •Feasibility due to broadband nature of synchrotron radiation
- •Low concentrated samples can be measured (detection limit ~ 1E10 atoms/cm²)
- •Edge position can identify oxidation state
- •Near edge structure probes electronic structure
- •SR-TXRF setup is used \rightarrow Fluorescence Detector measures absorption
- •Theoretical predictions difficult, but possible with FEFF8

Copper reference samples

Predominantly Cu metal

Cu	(0):	78%
CuO	(II):	17%
Cu2O	(I):	5%

reductive deposition:

$$Cu^{2+} + e_{Si} \longrightarrow Cu^{1+}$$

$$Cu^{1+} + e_{Si} \longrightarrow Cu^{0}$$

40 ppb Cu in UPW

40 ppb Cu in UPW, after Air Exposure

Below the critical concentration: 5 ppb Cu in UPW

first results:

Variation of the angle of incidence

 $I(\alpha, z) = I_0 * [1 + R(\alpha) + 2\sqrt{R(\alpha)} * \cos[\frac{2\pi \cdot z}{d} - \phi(\alpha)]$

 Φ : phase shift due to total external reflection $R(\alpha)$: reflectivity

 $d = \lambda/2\sin\alpha$

Variation of the angle of incidence

- Standing waves formed at glancing angles below critical angle
- Periodicity of SW modulated by angle

Determination of the particle size

Summary/Outlook

Summary

Deoxygenated UPW	Air-saturated UPW
 Predominantly, Cu metal deposition Oxidation in air Particle growth seen by AFM, angle scans 	 Deposition of Cu metal and oxides Samples are stable in air

•XANES at lower concentrations → below "flipping point"
•In-situ experiment to remove environmental contamination
•Nucleation & growth experiments - particle size/conc. as a f(time)