Problems with Scaling Cu Interconnects and Near-term Alleviation with ALD Barrier

Pawan Kapur

Department of Electrical Engineering Stanford University

November 21st, 2002

kapurp@stanford.edu

This work funded by MARCO Interconnect Focus Center

Outline

- Cu Interconnect Scaling Induced Problems
 - Interconnect metrics
- Technology impact on interconnects

(Near-term alleviation with ALD barrier)

- Realistic Resistance
 - Cu diffusion Barrier
 - Electron Scattering
 - Comparison of Cu with AI
- Capacitance: low-k may not be adequate
- Performance assessment with realistic parameters
 - Delay
 - Repeaters
 - Power
- Long-term solutions: novel communication mechanisms

Performance Metrics

Signaling

- Delay
- Power dissipation
- Bandwidth
- Area
- Self heating
- Data reliability (Noise)
 - Cross talk
 - ISI: impedance mismatch

Reliability

Electromigration

Clocking

- Timing uncertainty (skew and jitter)
- Power dissipation
- Slew rate
- Area
- Power Distribution
 - Supply reliability

Depend on R and C and L !

Interplay Between Signaling Metrics (I)

Simplistic formulae to see trends

$$\tau \propto RC_{inttot}$$

$$P = \alpha C_{inttot} V^2 f \propto C_{inttot}$$

$$C_{inttot} = C_{ILD} + C_{IMD} = 2l(\frac{\varepsilon_{ILD}}{AR} + \varepsilon_{IMD}AR)$$
$$R = \frac{\rho L}{(AR)W^2}$$

Minimum in power exists wrt AR

tanford University N

Interplay Between Signaling Metrics (II)

- AR increase (tradeoffs)=>
 - Better delay and electromigration
 - Worse power and cross talk
- In future increasing aspect ratio may not help
- Explains why AR dropped when Al to Cu switch

Pay attention to different metrics simultaneously rather than just delay
Design window quite complex

Motivation (I): Future Problems (Delay)

Simple Scaling Scenarios

- Local: Wires whose length shrinks
 - S1: AR maintained (3D shrink)
 - R up by α (worse)
 - C down by α (geometrical effect)
 - C down by low-k material
 - RC delay down as low-k
 - Delay going up compare to gate delay

• Semiglobal/Global: Length does not shrink

• Much worse than local (Will focus on global)

All types of signal wires delays are deteriorating wrt gate delay with scaling even with new low-k materials !

Motivation (II): Future Problems (Delay)

Careful about gate delay comparisons!

Is Copper/low-k Enough?: Long Term

Air-Gap/ Al

Stanford

Cu/xerogel

- Old dielectric $SiO_2 K = 4$
- Polymers or air-gaps K = 2 3
- Ultimate limit is air with K = 1

Interconnect DC Resistance: Technology Effects with Scaling

Cu Resistivity: Effect of Line Width Scaling

Diffusion barrier

- Consumes progressively larger fractional area
 - Barrier thickness (BT) doesn't scale
 - Higher AR => larger barrier area
- Technology dictates
 - Minimum thickness: reliability constraints
 - Profile: deposition technology

Electron surface scattering

- Reduced electron mobility with scaling
- Depends on
 - Ratio of λ_{mfp} to thickness
 - Interface quality: Roughness (P)

Resistivity of metal wires could be much higher than bulk value
 Problem is worse than anticipated in the ITRS roadmap

Cu Resistivity: Theoretical Background

• Barrier Effect

$$\frac{\rho_b}{\rho_o} = \frac{1}{1 - \frac{A_b}{AR w^2}}$$

• Electron Surface Scattering Effect

$$\frac{\rho_{s}}{\rho_{o}} = \frac{1}{1 - \frac{3(1 - P)\lambda_{mfp}}{2d}} \int_{1}^{\infty} \left(\frac{1}{X^{3}} - \frac{1}{X^{5}}\right) \frac{1 - e^{-kX}}{1 - Pe^{-kX}} dX$$

- k=d/ λ_{mfp}
- P (phenomenological parameter)
 - Surface properties
 - Rms roughness (asperity): temp., thickn.,
 - Surface potentials: film types
 - Incidence angles

K. Fuchs, *Proc. Cambridge Phil. Soc.*, 1938 E. H. Sondheimer, *Advan. Phys*, 1952.

Diffuse scattering: lower mobility

Elastic scattering: no mobility change

Cu Resistivity: Experimental Results

Device Letters, December 1998

Q. T. Jiang et. al., *Proc. IITC*, 2001, pp. 227-229

Methodology for Resistivity Calculations

Surface scattering effect

University

- P from 0 to 1 in step of 0.25
- Temperatures: 27°C and 100°C

• Barrier profiles

- SPEEDIE
 - Different technologies
 - 180 to 35nm node geometry
 - Tiers
- Two barrier thicknesses: 5 and 10nm

IPVD Profile Modeling Using SPEEDIE

Comparisons between SPEEDIE and experiments for Al deposition

Methodology for Resistivity Calculations

ALD most conformal => least barrier area => least resistivity

Cu Resistivity: Effect of Barrier Technology

- ALD least resistivity rise
- > ALD (10nm) and reasonable P = 0.5, resistivity = 3.2 $\mu\Omega$ -cm at 35nm
- \succ 3nm ALD: 2.7 and 1nm ALD: 2.5 $\mu\Omega\text{-cm}$
- > Al resistivity rises slower than Cu. Cross over with Cu resistivity possible
- Increasing P, reduces resistivity only slightly

Semi-global & Local Interconnects

Temp.=100 °C, P=0.5, Barrier thickn. 10 nm->1nm

tanford University Novem

Effect of Barrier Thickness: Global Wires

10 nm 5 nm P=0.5, T=100 °C Technology Node (µm) Technology Node (µm) Effective resistivity (microohm-cm) Effective resistivity (microohm-cm) 0.12 0.12 0.05 0.035 0.18 0.07 0.18 0.07 0.05 0.035 4 4 P=0 P=0Al Al P = 0.5P=0.5 P=13.6 3.6 P=1 PVD c-PVD Cu, P=0.5 IPVD c-PVD 3.2 3.2 ALD IPVD No Barrier ALD Vo Barrier 2.8 2.8 2.4 2.4 2000 2004 2008 2012 2000 2004 2008 2012 Year Year

• Resistivity rises much faster with 10 nm

>A barrierless Cu technology is desirable

Cu Resistivity: Effect of Chip Temperature and P

> Low power circuits and better packaging technology needed

tanford University Nove

Summary of resistance per unit length at 35nm node

Practical	Global	Semi-global	Local
Constraint	Resist. ($^{\Omega}$ /mm)	Resist. ($^{\Omega}$ /mm)	Resist. ($^{\Omega}$ /mm)
	35nm node	35nm node	35nm node
None: ideal	628	1773	3275
ρ=1.7μΩ-cm			
P=0.5, BT=10nm	1192 (190%)	4351 (245%)	9564 (292%)
P=1, BT=10nm	1123 (179%)	3942 (222%)	8490 (259%)
P=0.5, BT=0	908 (145%)	2668 (151%)	5030 (154%)

- Realistic Cu resistivity with technology constraints is much higher than the bulk value
- With 1 to 3nm ALD Barrier: significant reduction in resistivity

Interconnect Performance: In Light of Technology Effects

Delay: Nominal vs. Worst Case

Depends on switching condition on adjacent wires

Cu Interconnect Delay: With and Without Repeaters

Repeaters Reduce delay enormously for long global link

With Repeaters

A long global link w/o Repeaters

 $t_{total} = 0.4 R_w C_w I^2$

 $t_{total} = 5l\sqrt{r_o C_{nmos} R_w C_w} = 2l\sqrt{(0.4R_w C_w)(t_{FO4})}$

$$l_{opt} = 3.24 \sqrt{\frac{r_o C_{nmos}}{R_w C_w}}$$

$$S_{opt} = 0.58 \sqrt{\frac{r_o C_w}{R_w C_{nmos}}}$$

- Delay linear with length (quadratic without them)
- Delay scales much better
 - only sqrt depend. on deteriorating R_w
 - dependence on t_{FO4}
- But have power and area penalty

Signaling Wire Delay Modeling With Repeaters

- 66 and 93ps/mm at 50 and 35nm, resp.
- 30% more than with ideal Cu ρ at 50nm node

Also have Power and Area penalties Pushing bottleneck to power!

- Even with repeaters, 7.5X Clock at 35nm node 8X increase compared to 180nm node
 - 3X from clock speed
 - 1.85X from delay per mm
 - 1.45X from length increase
- Worst case delay
 - -11 times clock period at 35 nm

Chip Power Breakdown & Future Power Problems

V. Swerdlov et. al., IEEE Intern. SOI Conf., 2001

Number of Repeaters Required

- ITRS wire dimensions: justified based on barely enough metal levels to fit the wires
- Separation of memory and logic area because different wire length distributions
- Rent's rule based distribution for logic area

> Additional power will be consumed by repeaters

Global Signaling Wire: Repeater Power Penalty

Delay optimal repeaters ~ double power consumption of the wire • Global wire power same as above

Global Signaling Wire: Repeater Power minimization With Delay Tradeoff

- Tolerable delay penalty depends on architecture
- Still 20W of power dissipation due to repeaters at 50nm node
- With about 20% more delay power dissipation by global wires with repeaters on them is now
 ~ 60+20=80W at 50nm node

An Interesting Point about Interconnect Performance

Are inhomogeneous dielectrics better than homogeneous low-k?

- Cross talk better
- Delay could be better
 - Yes total cap would be lower with homogeneous but... improvement small cuz ILD is small fraction of total
 - Heat dissipation would be poorer and rise in resistance due to a higher temperature could offset above cap. advantage

Summary:Signaling Metal Wire Performance with Scaling

- Latency of metal based interconnects rises
- Power also rises
- Niche for Other Technologies?

⇒ Can we do better delay and power with optics (we will see)

Long-term Alternatives: Optics?

- Signal wires:
 - ✓Reduce delay?
 - ✓ Power?
- Clock distribution
 - ✓ Reduce jitter?
 - ✓Reduce skew?
 - ✓ Reduce clock distribution power (50-60% of total power on chip)

Signaling Application

Optical Vs. Electrical Wires: Delay

- Optical Interconnects are faster than repeated wires beyond a length well within chip size
- However for Signaling both delay and power are important
- 1.8 mW is approximately power dissipated by a repeated chip edge long wire

above which optical System is faster than even the electrical (Cu) repeated wires

Optical Vs. Electrical Wires: Delay & Power

- Longer lengths: optics both power and delay advantage
- and power disadvantage

- With tech. node power advantage diminishes but delay advantage increases
- Shorter lengths: diminishing delay advantage Still good for long global wires whose number is not large

Alternate architecture using wires more efficiently (higher SA) can give huge power as well as delay advantages with optics

Clock Application: Incremental Approach

Summary

Conventional Interconnects: Challenges and Limitations

- Realistic resistance modeling at future nodes
 - Barrier & surface scattering effects vital in dictating Cu effective resistivity
 - Cu effective ρ rises dramatically at all tiers: technology effects
 - ALD 3nm or less helps alleviate some problems but only near-term
 - A barrierless tech. as well as low temperature very beneficial
- Realistic Interconnect Delay modeling in future
 - Delay rises significantly compared to clock period even with repeaters
- Interconnect Power also rises in future
 - Delay optimized repeaters double the wire power

• Future Recommendations and identification of key technological concentration

- Need for barrierless technology, new ultra cooling mechanism (lower wire temperature) and interface technology yielding P values close to 1
- Optical Interconnects promising for longer links: Delay and Power

