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• Cu Interconnect Scaling Induced Problems
– Interconnect metrics

• Technology impact on interconnects
    (Near-term alleviation with ALD barrier)

– Realistic Resistance
• Cu diffusion Barrier
• Electron Scattering
• Comparison of  Cu with Al

– Capacitance: low-k may not be adequate

• Performance assessment with realistic parameters
– Delay
– Repeaters
– Power

• Long-term solutions: novel communication mechanisms
– Optical interconnects

Outline
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• Signaling
• Delay
• Power dissipation
• Bandwidth
• Area
• Self heating
• Data reliability (Noise)

• Cross talk
• ISI: impedance mismatch

Depend on R and C and L !

 Performance Metrics

• Clocking
• Timing uncertainty 
   (skew and jitter)
• Power dissipation
• Slew rate
• Area

• Power Distribution
• Supply reliability

 Reliability
• Electromigration
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Interplay Between Signaling Metrics (I)
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 Fixed length & width
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• AR increase (tradeoffs)=>
• Better delay and electromigration
• Worse power and cross talk

• In future increasing aspect ratio may 
  not help

• Explains why AR dropped when 
  Al to Cu switch

• Pay attention to different metrics simultaneously rather than just delay
• Design window quite complex

Interplay Between Signaling Metrics (II)
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Motivation (I): Future Problems (Delay)

• Local: Wires whose length shrinks
• S1: AR maintained (3D shrink)

• R up by α (worse)
• C down by α (geometrical effect)
• C down by low-k material
• RC delay down as low-k
• Delay going up compare to gate delay

• Semiglobal/Global: Length does not shrink
• Much worse than local  (Will focus on global)

All types of signal wires delays
are deteriorating wrt gate delay
with scaling even with new
low-k materials !

S2
S1

S3

Simple Scaling Scenarios
Wire Cross section
Scaling Scenarios

Wire length Scaling

Future

Global Local

.
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Motivation (II): Future Problems (Delay)

.

R. Havemann et. al., Proc.
of IEEE,vol. 89, No.5, 2001

Careful about gate delay comparisons!
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Is Copper/low-k Enough?: Long Term

• Old dielectric SiO2 K = 4
• Polymers  or air-gaps K = 2 - 3 
• Ultimate limit is air with K = 1

Air-Gap/ Al

Stanford

Cu/xerogel

SiO2 CuCu

Xerogel Xerogel KK = 1.8 = 1.8

SiOSiO22  KK = 4.0 = 4.0SiO2

Al

Air Gap
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Interconnect DC Resistance: 
Technology Effects with Scaling
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Cu Resistivity: Effect of Line Width Scaling

➢ Resistivity of metal wires could be much higher than bulk value
➢ Problem is worse than anticipated in the ITRS roadmap

 Diffusion barrier   
• Consumes progressively larger fractional area

– Barrier thickness (BT) doesn’t scale 
– Higher AR  => larger barrier area

• Technology dictates 
– Minimum thickness: reliability constraints
– Profile: deposition technology

 Electron surface scattering
• Reduced electron mobility with scaling
• Depends on

– Ratio of λmfp to thickness
– Interface quality: Roughness (P)

Future

ALD IPVD C-PVD
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Cu Resistivity: Theoretical Background 
• Barrier Effect
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lower mobility

P=0

P=1

e-

e-

• k=d/λmfp
• P (phenomenological parameter)

• Surface properties 
• Rms roughness (asperity): temp., thickn.,
• Surface potentials: film types 

• Incidence angles 

K. Fuchs, Proc. Cambridge Phil. Soc., 1938
E. H. Sondheimer, Advan. Phys, 1952.
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F. Chen and D. Gardner, IEEE Electron
Device Letters, December 1998 Q. T. Jiang et. al., Proc. IITC, 

2001, pp. 227-229

Cu Resistivity: Experimental Results
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Methodology for Resistivity Calculations

• Barrier profiles
• SPEEDIE

• Different technologies
• 180 to 35nm node geometry
• Tiers

• Two barrier thicknesses: 5 and 10nm

• Surface scattering effect
• P from 0 to 1 in step of 0.25
• Temperatures: 270C and 1000C
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Simulated

IPVD Profile Modeling Using SPEEDIE

0.4µµµµm trench Time Evolution
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credibility for metal 
deposition profile 
simulation using IPVD

Comparisons between SPEEDIE and experiments for Al deposition
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Methodology for Resistivity Calculations
 SPEEDIE used to simulate barrier
 profiles

• Different technologies
• Different geometries: ITRS

– 180 nm to 35 nm technology node
– Local, semi-global, global

• Two barrier thicknesses: 5 and 10 nm
• Surface scattering effect

PVD C-PVD IPVD ALD

Barrier

Global
Semi-global
Local

Width
Height
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Local

ALD most conformal => least barrier area => least resistivity

Most recently 1 and 3nm 
ALD barrier simulations
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Cu Resistivity: Effect of Barrier Technology

� ALD least resistivity rise
� ALD (10nm) and reasonable P = 0.5, resistivity = 3.2 µΩ-cm at 35nm
� 3nm ALD: 2.7 and 1nm ALD: 2.5 µΩµΩµΩµΩ-cm
� Al resistivity rises slower than Cu. Cross over with Cu resistivity possible
� Increasing P, reduces resistivity only slightly

Global Wires, Temp.= 1000C, P = 0.5, BT=10nm->1nm
Technology  node (µm)

Al P=0
P=0.5
P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVD
C-PVD

I-PVD

ALD: 10nm

ALD: 3nm
ALD: 1nm

No Barrier

Technology  node (µm)

Al P=0
P=0.5
P=1

Cu, P=1

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVD C-PVD
I-PVD

ALD: 10nm

ALD: 3nm
ALD: 1nm
No Barrier
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Semi-global & Local Interconnects

 Temp.=100 0C, P=0.5, Barrier thickn. 10 nm->1nm
 

• Resistivity rises faster for local
• Cu exceeds Al resistivity

• 35 nm node: 10nm ALD 4.2 (semi-
  global), 5 µΩµΩµΩµΩ-cm (local) 
• 3nm ALD: 2.9 (semi-global)
  3.1µΩµΩµΩµΩ-cm (local) at 35nm node

Technology  node (µm)

Al P=0
P=0.5
P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVD
C-PVD

I-PVD
ALD: 10nm

ALD: 3nm
ALD: 1nm

No Barrier

Semiglobal

Technology  node (µm)

Al P=0
P=0.5
P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVD C-PVD

ALD: 10nm

ALD: 3nm
ALD: 1nm

No Barrier

Local

Big advantage 
with ALD 
3nm or less !
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Effect of Barrier Thickness: Global Wires

• Resistivity rises much faster with 10 nm 

10 nm 5 nm

➢ A barrierless Cu technology is desirable

P=0.5, T=100 0C
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• Higher temperature ���� lower
   mobility ���� higher resistivity
• Realistic Values at 35nm

node: P=0.5, temp=100 0C
- local ~ 5 µΩµΩµΩµΩ-cm
- semi-global ~ 4.2 µΩµΩµΩµΩ-cm
- global ~ 3.2 µΩµΩµΩµΩ-cm

 Cu Resistivity: Effect of Chip Temperature and P
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Global

➢  Low power circuits and better packaging technology needed
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Summary of resistance per unit length at 35nm node

�Realistic Cu resistivity with technology constraints is
much higher than the bulk value

�With 1 to 3nm ALD Barrier: significant reduction in
resistivity

Practical

Constraint

Global

Resist. ( Ω/mm)

Semi-global

Resist. ( Ω/mm)

Local

Resist. ( Ω/mm)

35nm node 35nm node 35nm node

None: ideal
r =1.7mW-cm

628 1773 3275

P=0.5, BT=10nm 1192 (190%) 4351 (245%) 9564 (292%)

P=1, BT=10nm 1123 (179%) 3942 (222%) 8490 (259%)

P=0.5, BT=0 908 (145%) 2668 (151%) 5030 (154%)

ρ=1.7µΩ-cm
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Interconnect Performance: 
In Light of Technology Effects
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Delay: Nominal vs. Worst Case

• Nominal
  Cinttot=CIMD+CILD

 

• Worst Case 
 Cinttot=2CIMD+CILD

• Best Case
 Cinttot=CILD

o o
S

Depends on switching condition on adjacent wires

S

S

 Not only total capacitance
 plays a role in delay, IMD 
 plays a very import. Role

CIMD ~ 70% of Cinttot
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Cu Interconnect Delay: With and Without Repeaters
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With Repeaters

Driver Rec Driver Rec

Repeaters Reduce delay enormously for long global link

A long global link w/o Repeaters
ttotal=0.4RwCwl2

• Repeaters give best possible 
   interconnect delay
• Delay linear with length 
   (quadratic without them)
• Delay scales much better

– only sqrt depend. on deteriorating Rw
– dependence on tFO4 

• But have power and area penalty
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Signaling Wire Delay Modeling With Repeaters

• Even with repeaters, 7.5X Clock at 35nm node
   8X increase compared to 180nm node

– 3X from clock speed 
– 1.85X from delay per mm 
– 1.45X from length increase

• Worst case delay 
–11 times clock period at 35 nm

• ALD Barrier likely to be used in the future
– 66 and 93ps/mm at 50 and 35nm, resp.
– 30% more than with ideal Cu ρ 
    at 50nm node

 Also have Power and Area penalties
 Pushing bottleneck to power!
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Chip Power Breakdown & Future Power Problems
• Dynamic Power: ααααCV2f
• Leakage power: devices
• Short circuit power during switching
• Analog components: static power

Dynamic Power

Signalingclocking I/O

DevicesClocking
Interconnects

 Logic

Signaling
Interconnects

memory

Latches Buffers Off-chip
load

• Interconnect power
• Cint: dissipated in devices
• Rint: Joule heating (makes things worse)

• Transistor leakage and capacitance
• 20 Watts/cm2 -> 200 watts/cm2 

• Interconnect and clock power further 
  adds to this problem

• Clock frequency limited not by delay but by power?
• Clock frequency ~ 16FO4 delays
• (CV2f+Pstatic) < (∆T)(Area/thermal resistance)

V. Swerdlov et. al., IEEE Intern. SOI Conf., 2001
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• ITRS wire dimensions: justified based on barely enough metal levels to fit the wires
• Separation of memory and logic area because different wire length distributions
• Rent’s rule based distribution for logic area

Number of Repeaters Required

�Additional power will be consumed by repeaters
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Rent’s exponent of
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Global Signaling Wire: Repeater Power Penalty

 Delay optimal repeaters ~ double power consumption of the wire
• Global wire power same as above

 Exorbitant power signaling wires at
   future nodes (50nm)

• Global Wires= 60 Watts (p=0.55)

• Repeaters = 60 Watts (p=0.55)

• 120W for just global signaling wires
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Global Signaling Wire: Repeater Power minimization With
Delay Tradeoff

• Tolerable delay penalty depends on 
  architecture

• Still 20W of power dissipation due to 
   repeaters at 50nm node

• With about 20% more delay power 
  dissipation by global wires with
   repeaters on them is now 
  ~ 60+20=80W at 50nm node
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Are inhomogeneous dielectrics better than homogeneous
low-k?

• Cross talk better

• Delay could be better
• Yes total cap would be lower with homogeneous but…

     improvement small cuz ILD is small fraction of total 

• Heat dissipation would be poorer and rise in resistance due to a 
     higher temperature could offset above cap. advantage

An Interesting Point about Interconnect Performance
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Summary:Signaling Metal Wire Performance with Scaling

• Latency of metal based interconnects rises 

• Power also rises

• Niche for Other Technologies?

� Can we do better delay and power with optics
(we will see)
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Long-term Alternatives: Optics?
• Signal wires: 

�Reduce delay? 

� Power?

� Clock distribution

�Reduce jitter?

�Reduce skew?

�Reduce clock distribution power (50-60% of total power on chip)
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Electrical components

Optical components

Waveguide

Optical Interconnect

Electrical 
Signal In

Modulator

Electrical 
logic gate

Laser Source

Transmitter System

Optical
 Signal Out

Driver

Photo-detector
Front-end
and gain stages

Optical 
signal In

Electrical 
signal Out

CMOS level 
voltage swing

Electrical 
logic gate

Receiver System

Receiver
Optical Communication System
           topt=ttrans+twg+trec

Repeater
R/n

C/n
Driver Receiver

Electrical Interconnect with repeaters

Electrical Communication System

Signaling Application
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RPD=5.3mW, IOP=240µW
RPD=1.8mW, IOP=75µW

IOP: Incident Optical Power at the receiver
Practical Cu ρρρρ: ALD Barrier, Barrier Thickness=10nm, 
temperature=100 0C, Surface Scattering parameter (P)=0.5

Total Optical
System Delay, Cdet=250fF

Electrical(Cu) Delay With
Optimized Repeaters

Electrical(Cu)
Delay W/O 
Repeaters
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tica
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opper ρ
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Critical length 
above which optical System is 
faster than even the electrical (Cu) repeated wires

Optical Vs. Electrical Wires: Delay 

• Optical Interconnects are 
   faster than repeated wires
   beyond a length well within
   chip size 

• However for Signaling both 
  delay and power are important

 50nm Node

• 1.8 mW is approximately power 
   dissipated by a repeated chip 
   edge long wire
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• Longer lengths: optics both power and 
  delay advantage

• Shorter lengths: diminishing delay advantage
  and power disadvantage

• With tech. node power advantage diminishes 
   but delay advantage increases
• Still good for long global wires whose number
   is not large 

Alternate architecture using wires more efficiently (higher SA)
can give huge power as well as delay advantages with optics

Power Dissipation of a communication Link (mW)
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Optical

SA=0.3

SA=0.15

SA: switching activity

Chip-edge length
=28.6mm

20mm

10mm

IOP=
240µµµµW

IOP=75µµµµW

20mm
28.6mm

10mm

 50nm Node

• Optical: Cdet=250fF, 
                 IOP=240µW
• Electrical: SA=0.2
• Length (both electrical &
  optical)=chip edge long

 Optical

 Electrical

100nm
 70nm

 50nm node

Power Dissipation of a communication Link (mW)
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Optical Vs. Electrical Wires: Delay & Power
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Clock Application: Incremental Approach

Optical power

Photo-detector

Cdet Vout

Cf

Rf
Additional gain stages
for CMOs level output

Metal Wires: grid [6]

Metal Wires: H-tree [6]

Wireless global [6]

Optical global H-tree
       (This work)

Cdet=1pF

Cdet=0.75pF

Cdet=0.5pF

Cdet=0.25pF

Technology Node=100nm

[1] Floyd et al, Proc.IITC, pp. 248-251, 1999.

Level 1 of penetration
Level 2 of 
penetration

Optical Receivers
at spine locations

Optical clock source

Lower Detector Capacitance and higher 
IOP for low Receiver power Dissipation 

[1]

[1]

[1]
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Summary

•  Conventional Interconnects: Challenges and Limitations
–  Realistic resistance modeling at future nodes

• Barrier & surface scattering effects vital in dictating Cu effective resistivity
• Cu effective ρ rises dramatically at all tiers: technology effects

• ALD 3nm or less helps alleviate some problems but only near-term
• A barrierless tech. as well as low  temperature very beneficial

–  Realistic Interconnect Delay modeling in future
• Delay rises significantly compared to clock period even with repeaters

–  Interconnect Power also rises in future
• Delay optimized repeaters double the wire power

• Future Recommendations and identification of key technological
concentration

–  Need for barrierless technology, new ultra cooling mechanism (lower wire
    temperature) and interface technology yielding P values close to 1
–  Optical Interconnects promising for longer links: Delay and Power


