

Informing Design for Environment (DfE) in Semiconductor Manufacturing

Nikhil Krishnan, Ph.D. Candidate, U C Berkeley krishnan@cgdm.berkeley.edu Ph: 510 5435114 408 5635810 Joaquin Rosales, Ph.D. Student, U C Berkeley Prof. David Dornfeld, U C Berkeley

- 1. LCA Context, Overview and Challenges
- 2. Overall, first-order semiconductor LCA results using Economic Input Output Methods
- 3. The Environmental Value Systems (EnV-S) Analysis
- 4. Connecting the EnV-S to LCA analyses: preliminary results

from raw materials extraction to manufacture, use and end of life

Design: Ability to effect environmental improvements/changes -Greatest leverage is during product design and development

Environmental and health issues concerns arise at each stage

Environmental impacts

- LCA as a support tool
- Strategies inventory, impact, score
- Strategies cradle to grave

Consortium on Green Design and Manufacturing University of Cali

Typical Methodologies for Implementation

Classification

Metrics scores

Ecopoints?

- 'Typical' LCA Approach/SETAC
- **Streamlined Approaches**
- **Economic Input Output**

- •Cost and time intensive
- •Data gaps
- Uncertainties

Typical Methodologies for Implementation

• Streamlined LCA (SLCA) - Gradel

Impacts	Life cycle stage	Raw materials	Manufacturing	Use	Disposal
Air pollution					
Energy use					
Water use					
Hazardous waste					
Toxic					
EHS costs					

Simplified approach
Cost and time improvements
Similar results to full analysis?
Unexpected results unseen

- Economic Input Output Green Design Initiative
 - •Sectoral approach •Circumvent data issues •Economic ripple effect •Cost and time improvements •Approximate nature •Temporally fixed on data •\$1million of asbestos related products
- Hybrid Approaches
 - •Combine strengths of various approaches
 - Theoretically effective
 - •Practical/implementation issues?
 - •Case specific application

Consortium on Green Design and Manufacturing

Asbestos products

Effects	Total
Economic Purchases [\$ million]	2.136594
Electricity Used [Mkw-hr]	0.856254
Energy Used [TJ]	16.836959
Conventional Pollutants Released [metric tons]	29.902856
OSHA Safety [fatalities]	0.000517
Greenhouse Gases Released [metric tons CO2 equivalents]	1194.785867
Fertilizers Used [\$ million]	0.000548
Fuels Used [metric tons]	445.846441
Ores Used - at least [metric tons]	258.587962
Hazardous Waste Generated [RCRA, metric tons]	51.675771
External Costs Incurred [median, \$ million]	0.051903
Toxic Releases and Transfers [metric tons]	10.567005
Weighted Toxic Releases and Transfers [metric tons]	29.397856
Water Used [billion gallons]	0.010157

© Green Design Initiative, Carnegie Mellon University, 2002.

Commercial Software

- Product Based
 - Gabi (Stuttgart)
 - Simapro (Pré consultants)
 - Umberto (ifu Hamburg)
 - Others (LCAit, KCL, Sylvatica)

- •Tools use multiple databases/sources
- •Ease of use
- •Different valuation approaches
- •Databases are site/region specific
- •Databases are hidden transparency issues
- •Valuation issues site specific and hidden

Sankey diagram - Gabi

Commercial Software (contd.)

- Process focus
 - Idemat (TU Delft)

Process focus - unusualStill, data driven

 Environmental Value Systems (EnV-S) Analysis (Berkeley)
 Process focus
 Model based
 More information on model-based approaches later

Case Example (Semiconductors)

•	Functional unit	 Important for a fair comparison 	 Perfluorocarbon (PFC) Abatement comparison based on mass flow comparison based on wafer pass - 200, 300mm
•	Temporal scale	 Analysis is static Time lags cannot be understood 	 Copper in semiconductors idle flow, continuous flow (specification from the tool) copper discharge limits (bath dumps) Need average analysis and peak analysis Bay area - 2lb/day Cu discharge regulation, ~2ppm Cu concentration regulation
•	Spatial scale	 Analysis of local Vs. global effects different at different 	•Health factors Vs. Environmental factors
		inventory	Health Hazard scoring

Challenges adapted from - Krishnan, N, 'Understanding drivers, benefits and shortcomings of Life-Cycle Assessment (LCA): Strategies for a successful implementation in process type industries,' EH&S Performance and Corporate Responsibility: Building Bridges and Competitive Advantage, Pacific Industrial and Business Association, 9th Annual Silicon Valley EH&S Conference, February 26 and 27, 2002.

Consortium on Green Design and Manufacturing

Challenges (contd.)

Case Example (Semiconductors)

• Boundary problem

•circumvented in Economic Input Output type analyses and streamlined analyses

• Cost and time

Data availability

•Top o
of sen
manu

•Top down Vs. bottom up view of semiconductor manufacturing?

Gaps
Multiple, non-compatible sources
Obsolete
Monitoring energy consumption at tool
Estimating from recipes
Averaging from facilities

Challenges (contd.) Case Example (Semiconductors)

- Product focus
- No process focus (ability to impact process
 No service focus (needs based analyses)

- Uncertainty
 In meth data, im
 - In methodology, data, impactsQuantitative?Comparative?

- Valuation
 Subjective decision making
 No 'correct' approach
 Site specific
 Perhaps no standardization feasible -or sensible, given uncertainties
- •Present multiple impacts
- Health
- Environmental
- Manufacturing
- Process
- •Cost

Semiconductor Impacts relative to US National

	Output US	
Liquid Waste	8.03E+04	billion gallons
Hazardous Waste	40.0	Million Tons
GWP	1600.0	MMTCE
PFC's	37.1	MMTCE
Inputs		
Water	123735	billion gallons
Electricity	3652.0	billion KWhr
Chemicals	8500.0	Million Tons

Outputs from the Fab		Source	Inputs to the Fab		Source
Liquid Waste	75 gal/in^2	[1]	Water	30 gal/in^2	[3, 6, 2]
Hazardous Waste	0.1 kg/in^2	[1]	Electricity	10 KWhr/in^2	[2, 3]
GWP	2.6 kgCE/in^2	[2, 3, 4]	Chemicals	0.2 kg/in^2	[5]
PFC's	0.9 kgCE/in^2	[4]			
Toxic Releases	0.01 kg/in^2	[5]			

Impacts per square inch of Si

Consortium on Green Design and Manufacturing

Life cycle environmental analysis for the semiconductor industry

• Using Economic Input-Output Analysis

1997 Summary of sector life cycle results

1997 Environmental Impact Comparison of Selected US Industries **OUTPUTS** (continued)

1997 Environmental Impact Comparison of Selected US Industries OUTPUTS

1997 impacts normalized to sector output

• Semiconductor sector is high when normalized per \$ of output

1997 and 1992 results comparison

Industry Size Change from 1992 - 1997 (in 1992 Dollars)

Water and Energy Use Change from 1992 - 1997 (in 1992 Dollars)

Consortium on Green Design and Manufacturing

- Equipment manufacturers need a tool for the quantitative evaluation and comparison of <u>tool-centric</u> environmental solutions
- EnV-S Model Blueprint
 - Focus the model on the process tool and the support equipment
 - Ensure the model output is in terms of important business metrics such as CoO
 - Factor in all controllable variables that significantly affect the key outputs
 - Provide sensitivity analysis for those controllable variables
 - Enable "what-if" comparisons between various solutions
 - Make the tool suitable for the casual user (i.e., user-friendly)
 - Use industry norms for cost/performance parameters (e.g., UPW costs)
 - Make the tool readily available and, if possible, an industry standard

Slide adapted from Woolston, M., Francis, T., "Semiconductor EHS Goals - Why do we need an Environmental Value Systems Analysis Model?... a background," Seminar on the Environmental Value Systems (EnV-S) Analysis, SEMICON West 2002.

- The Environmental Value Systems (EnV-S) Analysis
 - Informing Design for Environment (DFE) in semiconductor manufacturing
 - Focus on bottom-up, tool-centric views develop analysis for platforms
 - Inform design decisions for equipment suppliers

A

Case study: PFC Abatement Option Space

Options space - Different combinations of abatement and downstream options

Analysis: (Environmental Cost of Ownership (COO))

- 1. Sensitivity analysis of costs and cost differences
- 2. Cost of downstream HF treatment as a function of flow
- and configuration parameters

Case study adapted from, Krishnan, N., Woolston, M., Dornfeld, D., 'Exploring Environmental Cost of Ownership of Perfluorocarbon (PFC) Abatement Options and Decision Spaces using the Environmental Value Systems (EnV-S) Analysis,' Environmental Technologies and Manufacturing Practices, SEMICON West 2002

Consortium on Green Design and Manufacturing Un

Design graphs and trade off analysis

syster ■ 0.40-0.50 0.30-0.40 0.20-0.30 0.10-0.20 0.00-0.10 of absol ŝ 2 5 6 7 8 9 10 11 12 2 3 4 No. of chambers HF treatment (\$/gal) 0 0.6 0.4 0.2 0.7 0.7 Absorption 0.6 0.6 costs Cost 0.5 0.5 \$/wafer pass pass (\$/wafer pass) 0.4 0.4 8.0 **%** Water 0.3 scrubbing 0.2 costs Cost (\$/wafer pass) 0.1 0.1 0

\$/wafer pass - 200

CF4 flow / chamber, 3 chamber system (sccm)

200

100

- 200mm flows are lower there is region of operation (0-10c/wafer pass) With many chambers connected to a few absorption systems

Trade off analysis in examining different HF treatment systems

Consortium on Green Design and Manufacturing University of California, Berkeley

0300

OptionS

0.10

0.05

0.00

Option

Option 2

Option 3

Option A

Consortium on Green Design and Manufacturing University of California, Berkeley

-0.02

-0.04

-0.06

-0.08

-0.10

Option 2 - Option 5

Option 2 - Option 4

Option 5 - Option 4

- The EnV-S can be used as a DfE tool for
 - Semiconductor process and equipment design and selection
- Current work is expanding the analysis to new Semiconductor modules by developing platform-based modules (CMP, etch, deposition, etc.)
- One of the future directions
 - Expand the analysis to look at life cycle effect during the design stage. ie, DFE with a Life cycle focus.
 - This has potentially different users or audiences
 - Different applications within product design cycles
- Two approaches to this hybrid analysis
 - 1. EnV-S + SETAC LCA Methods
 - 2. EnV-S + Economic Input Output Method
 - Preliminary results with the *second approach* are outlined here

Summary of parameters for a "typical" copper CMP process

	ber CIMP totals for a "typical" pr	OCESS
Liquid		
Primer	21 g/min	0.01 \$/wafer
UPW	7514 g/min	0.07 \$/wafer
Slurry	0.13 gal/wafer	3.99 \$/wafer
Other additives	0.08 g/min	0.00 \$/wafer
Solid		
Pad	293 wafers/item	0.75 \$/wafer
Pad conditioning	167 wafers/item	0.60 \$/wafer
PVA brushes	2333 wafers/item	0.13 \$/wafer
Other consumables	2933 wafers/item	0.26 \$/wafer
Electricity	3000 W	0.01 \$/wafer

Consortium on Green Design and Manufacturing

- Preliminary life cycle effects using EIOLCA
 - high growth rates
 - high impacts/\$
 - Explore applicability of data further
- Develop combination of EnV-S and EIOLCA and other life-cycle approaches
 - Compare results with SETAC-type methods for a few case studies
 - This could offer a quick and easy way
 - to inform DFE for certain environmental issues during early product development phases
 - Or to draft/examine broad policy decisions

1992 summary of sector life cycle results

1992 Environmental Impact Comparison of Selected US Industries INPUTS

1992 Environmental Impact Comparison of Selected US Industri OUTPUTS (continued)

1992 Environmental Impact Comparison of Selected US Industries OUTPUTS

Environmental Trends

TIME

Slide adapted from Woolston, M., Francis, T., "Semiconductor EHS Goals - Why do we need an Environmental Value Systems Analysis Model?... a background," Seminar on the Environmental Value Systems (EnV-S) Analysis, SEMICON West 2002.

Consortium on Green Design and Manufacturing

Slide adapted from Woolston, M., Francis, T., "Semiconductor EHS Goals - Why do we need an Environmental Value Systems Analysis Model?... a background," Seminar on the Environmental Value Systems (EnV-S) Analysis, SEMICON West 2002.

Consortium on Green Design and Manufacturing

Summary of System Parameters

Summary of System Parameters (/chamber)	200mm	300mm
CE4 (seem) flow from process chamber	50	250
Throughput (wafers/chamber)	50	250
Itilization (%)	70	15 70
Annual hours of proceessing	6115	70 6115
Pump dilution ratio (nitrogen to gas flow)	1000	1000
C equivalent (g/min)	332	1662
Cequivalent (g. / wafer pass)	1330	6648
C/year for a 5 layer etch (tons). 5000 wsps	1728	8642
C from energy use (10KWhr/in^2, SIA Roadmap)	24937	56109
If unabated and unscrubbed, HF (g/wafer pass)	0.7	3.4
A difference of 1 c/wafer pass =	2751	\$/Etch tool/year

Could configure by

(i) cascading multiple chambers to an absorption system

(ii) Chaining multiple absorption systems together (essentially adjusting absorption capacity)

$$CoO_{abs} = \frac{a.(FC + UC)}{c.w} + \frac{CC + DC}{a.w}$$

Where,

 CoO_{abs} = Absorption System Cost

a = Number of absorption systems cascaded together

c = Number of chambers connected to the systems

FC = Fixed costs/system/year

UC = Utility costs/system/year

w = Number of wafers processed/year

CC = Consumable costs

DC = Disposal costs

- For the individual units (plasma and catalytic), HF treatment costs are the most important!
- But these disappear in the plasma-
- catalytic CoO difference. Now catalytic capital cost is the biggest cost factor!