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MOSFET ScalingMOSFET Scaling
• Metal-Oxide-Semiconductor (MOS) structure

As MOS gates are made shorter 
they must be made thinner to 
control the channel. 

Green at al., J. Appl. Phys, 2001, adapted from ITRS
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Gate Leakage Due to Electron TunnelingGate Leakage Due to Electron Tunneling
Current Technology:

• Leakage current from electron 
tunneling increasing 
exponentially as gate dielectric 
thickness decreases.

DrainSource

SiO2

Gate
Tunneling

e-
P.A. Packan, Science, 1999

ITRS Executive Summary: Challenging Issues Through 2007
1. Cost effectiveness, process control, and reliability of very thin oxy-nitride gate 
dielectrics, especially considering the high gate leakage. 
4. Controlling static power dissipation in the face of rapidly increasing leakage.
6. Early availability of manufacturing-worthy high-k gate dielectrics is necessary to 
meet stringent gate leakage and performance requirements.

t
C 0κε=
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HighHigh--K ChoicesK Choices

• ZrO2 ,HfO2 ,and Al2O3 are favorable candidates for the gate dielectric
• High-k 
• Stable with respect to SiO2 and silicate formation    

• Problem: Process for producing uniform films with good dielectric 
properties needs to be developed.
• Possible solution: Atomic Layer Deposition (ALD)

• Problem: Need interface with good electrical properties
• Possible solution: Deposit one atomic layer of SiO2
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Traditional TCADTraditional TCAD

www.silvaco.com

Process Simulation Device Simulation

ITRS Modeling and Simulation Challenges Through 2007: 
1. A succession of modeling tools that marry atomistic effects with present day 
continuum software tools.
2. Methods and algorithms that will allow prediction of CMOS limits. Quantum based
simulators.



charlescharles@@chemengchemeng..stanfordstanford..eduedu 6Stanford UniversityStanford University Chemical Engineering and Materials Science and Engineering

Quantum ChemistryQuantum Chemistry

Walter Kohn
USA
University of California
Santa Barbara, CA

John Pople
USA, Great Britain
Northwestern University
Evanston, IL

“for his development of the 
density-functional theory”

“for his development of 
computational methods in 
quantum chemistry”
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The Electronic Wave FunctionThe Electronic Wave Function

This is one orbital of 
ammonia adsorbed on a 
cluster representing 
the silicon surface.

Here the wave function is the determinant of a 490x490 matrix (240,100 elements). Each element 
is a linear combination of 924 basis functions. The 924 basis coefficients for each of the 490 orbitals 
is found by minimizing the expectation value of the Hamiltonian.

NH3 on Si33H28

φj = ciϕ i
i

924
∑

Basis functions

490
orbitals

490
electrons

ˆ H ψ = E ψ

∂
∂ci

ψ ˆ H ψ = 0The Variational 
Principle

The Schrödinger
equation
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Transition 
State

Potential Energy SurfacePotential Energy Surface

SiH4

SiH2

NH3
+

En
er

gy

Reactants Products

+ H2

+ H2

Reactants and products are local minima.

Transition states are saddle points.

Activation barrier determines the rate of 
reaction.

Frequencies can identify species, are used 
for zero-point and thermal corrections, 
and pre-exponential factors. 

Enthalpy of Reaction driving force for rxn.

Competing reactions can be explored.

SiH3NH2
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Surface Reaction ModelingSurface Reaction Modeling

• Cluster approximations are used to model the surface reactive sites

• Cluster models: 1-dimer (blue), 3-dimer (copper), 5-dimer (gold),
V-trench, and Λ-trench (green).

• Hydrogen termination.

1-dimer 3-dimer 5-dimer

[001]

[110]
[110]

trench

Approximation: The chemistry on the cluster captures the chemistry of the surface
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NHNH33 on on SiSi (100)(100)--(2x1)(2x1)

1.  NH3(g) initially 
adsorbs on the 
“down” Si atom.
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NH3(a)

NH2(a) + H(a)
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• Insertion barrier is higher 
than desorption barrier.

• TPD (Chen, 1992) 
• 73% of NH2(a) 

species recombine 
with H(a)1

2
3

4

Insertion Mechanism:

2.  NH3(a) dissociates 
into NH2(a)  and 
H(a).

3.  NH2(a) inserts into 
Si-Si dimer bond.

4.  NH2(a) dissociates 
into NH(a) and H(a).

NH2(b) + H(a)

NH(b) + 2 H(a)
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Subsequent Nitride GrowthSubsequent Nitride Growth

Reactions on Si-H sites

+
NH3(g)

H2(g)

Si-NH2(a)

+ SiH4(g)
+ H2(g)

Reactions on N-H sites

+ SiH4(g)
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Reactor ModelingReactor Modeling

• Model CVD reactor using simple geometry (2D channel)
• Couple transport, gas-phase and surface reactions
• Use predicted barriers for the gas-phase and surface reactions

Reactants By-products

Wafer
20 cm

SiH4, NH3, 
N2O

5 cm
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Initial Oxidation Reaction MechanismInitial Oxidation Reaction Mechanism
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O(sb)-O(a)
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Reaction is all down hill: Why is the oxidation slow?
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The ALD ProcessThe ALD Process
Self-terminating Reactions
• ALD consists of an alternating 
sequence of self-terminating reactions.  
• Ideally, each step should form a 
monolayer.

Advantages of ALD

• Excellent conformality (step 
coverage >95%)
• Excellent film thickness control 
–allows for growth of extremely 
thin films 
• Low processing temperatures
• High purity films

TEM micrographs of Al2O3 obtained with ALD and conventional MOCVD 
process (courtesy of IPS-Tech)

S. George et al.

ALD Issues

• Process is slow
• Submonolayer coverage
• Interlayer SiO2 below ZrO2
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Zirconium Oxide ALDZirconium Oxide ALD

ZrCl4(g)H2O(g)

Zr-Cl* Zr-OH*

ZrO2
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ZrOZrO22 ALD Reaction with ALD Reaction with ZrZr--OH* SitesOH* Sites
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Zr-OH*
ZrCl4(g)

+

ZrCl4* complex

HCl desorption TS

HCl complex

+       HCl(g)

Zr-O-ZrCl3*
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∆H0

∆G298

∆G600

Trapping-mediated pathway:

1. Zr-OH*-ZrCl4 complex is formed

2. HCl(a) formation transition state

3. HCl(a) is formed from one H 
atom from H2O and one Cl atom 
from ZrCl3

4. HCl desorbs

Reactants

Products
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Trapping-mediated pathway:

1. Zr-Cl*-H2O complex is formed

2. HCl(a) formation transition 
state

3. HCl(a) is formed from one H 
atom from H2O and one Cl
atom from ZrCl3

4. HCl desorbs

+
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+  HCl(g)

Comparison of the 1Comparison of the 1stst & 2& 2ndnd HalfHalf--reactions of reactions of ZrOZrO22 ALDALD
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Comparison of the 1Comparison of the 1stst & 2& 2ndnd HalfHalf--reactions of reactions of HfOHfO22 ALDALD
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Partial Monolayer GrowthPartial Monolayer Growth

• Raising the temperature raises new issues:
• Desorption becomes more favorable than dissociation
• This results in less than a monolayer coverage per cycle. 

• Solution: increase the precursor pressure
• Low-thermal budget processing might be desired
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Reactions on HReactions on H--terminated Surfaceterminated Surface

• Reaction of ZrCl4(g) with the Si-H* has a 
high activation barrier and endothermicity.

• Reactions on the H-terminated surface
will proceed slowly. This agrees with 
experimental results of Copel et al. (APL, 
2000)

Si-H*

ZrCl4(g)

+ +
HCl (g)

Zr-Cl*

Ea = 53 kcal/mol 

∆H = 31 kcal/mol 

Copel et al., APL, 2000
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Reaction of of ZrClReaction of of ZrCl4 4 on OH Terminated SiOon OH Terminated SiO22

• ZrCl4 reacts with Si-OH* surface sites to form a Si-OH-ZrCl4
intermediate,  followed by HCl evolution and formation of a 
Si-O-Zr-Cl* surface site

+

29
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HCl(g)
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21
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Reaction Coordinate
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Reaction of HReaction of H22O with the O with the ZrZr--ClCl* Surface Site* Surface Site

2

3

1. Zr-Cl*-H2O complex is formed

2. HCl(a) is formed from one H atom from 
H2O and one Cl atom from ZrCl3

3. HCl desorbs

The H2O complex is very stable!
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Comparison of ZrOComparison of ZrO22 ALD Reactions on SiOALD Reactions on SiO2 2 and ZrOand ZrO22
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Half-reaction with ZrCl4:
A: Si-OH* + ZrCl4 = Si-O-Zr-Cl* + HCl

B: Zr-OH* + ZrCl4 = Zr-O-Zr-Cl * + HCl

Half-reaction with H2O:
A: Si-O-Zr-Cl* + H2O = Si-O-Zr-OH* + HCl

B: Zr-O-Zr-Cl* + H2O = Zr-O-Zr-OH* + HCl
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Very similar reaction paths because the chemical reactions are very localized. 
Issues: Trapping at the intermediate state.
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ZrClZrCl44 on the Si(100)on the Si(100)--(2x1) Surface(2x1) Surface
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46

• ZrCl4 dissociates into ZrCl3(a) and Cl(a) on the Si(100)-(2x1) surface

• This results in Zr-Cl* and Si-Cl* surface sites
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Structure of ZrCl4(a) has not been 
obtained. However, ∆Hads is 
estimated to be similar to ETS

ZrCl4(g) +

Si(100)-(2×1)

ZrCl4(a)

TS

ZrCl3(a) + Cl(a)

This is not the preferred 
process because it results 
in Zr directly bonded to Si
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Reaction of HReaction of H22O with the O with the ZrZr--ClCl* Surface Site* Surface Site
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Reaction of H2O with the Zr-Cl* site results 
in a Zr-OH* site in place of the Zr-Cl* site

1
2

3

Trapping-mediated mechanism:

1. Zr-Cl*-H2O complex is formed

2. HCl(a) is formed from one H atom from 
H2O and one Cl atom from ZrCl3

3. HCl desorbs

The H2O complex is very stable!
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Reaction of HReaction of H22O with the O with the SiSi--ClCl* Surface Site* Surface Site

-6

-4

-2

0

2

4

6

8

10

12

Direct dissociation reaction:
1.No stable complex formed
2.Reaction with H2O with the Si-
Cl* site results in a Si-OH* site in 
place of the Si-Cl* site
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Reaction of ZrClReaction of ZrCl44 with the with the SiSi--OH* SurfaceOH* Surface

Reaction of ZrCl4 with the Si-OH* surface site
results in a Zr-Cl* in place of Si-OH*
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Trapping-mediated mechanism:

1. ZrCl4-Si-OH* complex is formed

2. HCl(a) is formed from one H 
atom from Si-OH and one Cl
atom from ZrCl4

3. HCl desorbs

Si-OH*

ZrCl4(g)

+

ZrCl4(a)

TS
HCl (a)

Zr-Cl*

+

HCl (g)

The H2O complex is very stable!
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Reaction of ZrClReaction of ZrCl44 with the with the SiSi--OH* SurfaceOH* Surface

Reaction of ZrCl4 with the Si-H* surface site
results in a Zr-Cl* bond in place of Si-H*

-50

-40

-30

-20

-10

0

10

20

30

40

∆E
 (k

ca
l/m

ol
)

Si-H*

ZrCl4(g)

+

43
53 49

25

ZrCl4(a)

1

TS HCl (a)
2

+
HCl (g)

Zr-Cl*

Trapping-mediated mechanism:

1. ZrCl4-Si-OH* complex is formed

2. HCl(a) is formed from one H atom 
from Si-H and one Cl atom from 
ZrCl4
3. HCl desorbs

3
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14 12

25

Al(CH3)3(a)

+
Al(CH3)3

Al-OH TS

CH4

Al-(CH3)2

+

Al2O3 ALD reaction 
mechanisms
(First Half Reaction)

AlAl--OH*+Al(CHOH*+Al(CH33))33 AlAl--OO--AlAl--CHCH33*+CH*+CH44

Mechanism of First 
Half Reaction
• TMA adsorbs 

molecularly on 
to Al-OH* 
surface site

• -CH3 group from 
TMA reacts with 
H atom from 
surface –OH*

• Desorption of 
CH4 and 
formation of -O-
Al-(CH3)2*

AlAl22OO33 ALD from TMA and WaterALD from TMA and Water
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13 16

21

+

Al(CH3)2

H2O

H2O(a)

TS

+
CH4Al-CH3

AlAl--CHCH33*+H*+H22OO AlAl--OH*+CHOH*+CH44

Quantum Chemical StudyQuantum Chemical Study of of AlAl22OO33 ALDALD

Mechanism of Second
Half Reaction
• H2O adsorbs 

molecularly on to 
Al-(CH3)2* surface 
site

• -CH3 group from 
surface site 
reacts with H 
atom from H2O

• Desorption of 
CH4 and 
formation of Al-
OH*

Al2O3 ALD reaction 
mechanisms
(Second Half Reaction)
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Advantages of GermaniumAdvantages of Germanium

• Well understood Group lV material
• Narrower band gap which might allow Ge based 

transmitters and receivers in optical interconnects
• Higher mobility for both electrons and holes
• No interlayer oxide due to relative instability of GeO2
• Less dependence of velocity saturation below 32nm 

node
• Significantly lower processing temperatures
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Dissociative Adsorption of HDissociative Adsorption of H22O/HO/H22OO22
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ZrClZrCl44 Initial Reaction on GeInitial Reaction on Ge--OHOH
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Bridging Across the TrenchBridging Across the Trench

6.3 kcal mol-1
more stable

19.2 kcal mol-1
more stable

Ring 
strain 
energy
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SummarySummary
• Detailed mechanisms proposed for ZrO2, HfO2 and Al2O3 ALD reactions. 
Additional reactions (for example elimination of H2O by condensation 
reactions) calculated or being studied. 

• Calculations show that submonolayer coverage mostly due to desorption of 
precursor from the surface, NOT steric effects for ALD of high-K using 
chloride precursors. 

• Al2O3 ALD using TMA should have higher growth rates (monolayers/cycle). 

• Calculations indicate that the hydroxylation of Ge surfaces with H2O2 is 
kinetically more favorable. 

• ALD with ZrCl4 precursors is more favorable when the second ligand bond is 
formed across the trench.

• Other precursors such as metal alkoxides, cyclopentadienyls or β-
diketonates might result in faster deposition rates.
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