Simulation of High-K Gate Deposition

Charles B. Musgrave

Yuniarto Widjaja, Gillian Gao, Joseph Han, and Juan Senosiain

Departments of Chemical Engineering & Materials Science and Engineering Stanford University, Stanford, CA 94305

MOSFET Scaling

• Metal-Oxide-Semiconductor (MOS) structure

Gate Leakage Due to Electron Tunneling

Current Technology:

Leakage current from electron tunneling increasing exponentially as gate dielectric thickness decreases.

Tunneling

Gate

Dopant atoms

ITRS Executive Summary: Challenging Issues Through 2007

1. Cost effectiveness, process control, and reliability of very thin oxy-nitride gate dielectrics, especially considering the high gate leakage.

4. Controlling static power dissipation in the face of rapidly increasing leakage.

6. Early availability of manufacturing-worthy high-k gate dielectrics is necessary to meet stringent gate leakage and performance requirements.

$$C = \frac{\kappa \mathcal{E}_0}{t}$$

High-K Choices

Dielectric Materials		κ
silicon oxide	SiO ₂	3.5
silicon nitride	Si ₃ N ₄	7
aluminum oxide	Al ₂ O ₃	9
zirconium oxide	ZrO ₂	25
hafnium oxide	HfO ₂	30 - 40

- ZrO_2 , HfO₂, and Al₂O₃ are favorable candidates for the gate dielectric
 - High-k
 - Stable with respect to SiO₂ and silicate formation
- Problem: Process for producing uniform films with good dielectric properties needs to be developed.
 - Possible solution: Atomic Layer Deposition (ALD)
- Problem: Need interface with good electrical properties
 - Possible solution: Deposit one atomic layer of SiO₂

Traditional TCAD

Process Simulation

Device Simulation

www.silvaco.com

ITRS Modeling and Simulation Challenges Through 2007:

1. A succession of modeling tools that marry atomistic effects with present day continuum software tools.

2. Methods and algorithms that will allow prediction of CMOS limits. Quantum based simulators.

Quantum Chemistry

Walter Kohn USA University of California Santa Barbara, CA

John Pople USA, Great Britain Northwestern University Evanston, IL

"for his development of the density-functional theory"

"for his development of computational methods in quantum chemistry"

Stanford University Chemical Engineering and Materials Science and Engineering **charles@chemeng.stanford.edu** 6

The Electronic Wave Function

This is one orbital of ammonia adsorbed on a cluster representing the silicon surface.

NH₃ on Si₃₃H₂₈

Here the wave function is the determinant of a 490x490 matrix (240,100 elements). Each element is a linear combination of 924 basis functions. The 924 basis coefficients for each of the 490 orbitals is found by minimizing the expectation value of the Hamiltonian.

The Schrödinger
equation
The Variational
Principle
$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{490}{\text{orbitals}}$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

$$\frac{\partial}{\partial c_i} \langle \psi | \hat{H} | \psi \rangle = 0$$

Potential Energy Surface

Reactants and products are local minima.

Transition states are saddle points.

Competing reactions can be explored.

Surface Reaction Modeling

trench 1-dimer 3-dimer 5-dimer

- Cluster models: 1-dimer (blue), 3-dimer (copper), 5-dimer (gold), V-trench, and Λ-trench (green).
- Hydrogen termination.

Approximation: The chemistry on the cluster captures the chemistry of the surface

NH₃ on Si (100)-(2x1)

Insertion Mechanism:

- NH₃(g) initially adsorbs on the "down" Si atom.
- NH₃(a) dissociates into NH₂(a) and H(a).
- 3. NH₂(a) inserts into Si-Si dimer bond.
- 4. NH₂(a) dissociates into NH(a) and H(a).

Insertion barrier is higher than desorption barrier.

- TPD (Chen, 1992)
 - 73% of NH₂(a) species recombine with H(a)

Subsequent Nitride Growth

Reactor Modeling

- Model CVD reactor using simple geometry (2D channel)
- Couple transport, gas-phase and surface reactions
- Use predicted barriers for the gas-phase and surface reactions

Initial Oxidation Reaction Mechanism

Reaction is all down hill: Why is the oxidation slow?

The ALD Process

Self-terminating Reactions

- ALD consists of an alternating sequence of self-terminating reactions.
- Ideally, each step should form a monolayer.

Advantages of ALD

- Excellent conformality (step) coverage >95%)
- Excellent film thickness control -allows for growth of extremely thin films
- Low processing temperatures
- High purity films

ALD Issues

- Process is slow
- Submonolayer coverage
- Interlayer SiO₂ below ZrO₂

Zirconium Oxide ALD

ZrO₂ ALD Reaction with Zr-OH* Sites

ZrO₂ ALD Reaction with Zr-Cl* Sites

HCI(g)

Trapping-mediated pathway:

- 1. Zr-Cl*-H₂O complex is formed
- 2. HCI(a) formation transition state
- 3. HCl(a) is formed from one H atom from H₂O and one Cl atom from ZrCl₃
- 4. HCI desorbs

Comparison of the 1st & 2nd Half-reactions of ZrO₂ ALD

Comparison of the 1st & 2nd Half-reactions of HfO₂ ALD

Partial Monolayer Growth

- Raising the temperature raises new issues:
 - Desorption becomes more favorable than dissociation
 - This results in less than a monolayer coverage per cycle.
 - Solution: increase the precursor pressure
 - Low-thermal budget processing might be desired

Reactions on H-terminated Surface

- Reaction of ZrCl₄(g) with the Si-H* has a high activation barrier and endothermicity.
- Reactions on the H-terminated surface will proceed slowly. This agrees with experimental results of Copel *et al.* (APL, 2000)

Copel et al., APL, 2000

5

Reaction of of ZrCl₄ on OH Terminated SiO₂

 ZrCl₄ reacts with Si-OH* surface sites to form a Si-OH-ZrCl₄ intermediate, followed by HCl evolution and formation of a Si-O-Zr-Cl* surface site

Reaction of H₂O with the Zr-CI* Surface Site

Comparison of ZrO₂ ALD Reactions on SiO₂ and ZrO₂

Half-reaction with ZrCl₄:

A: Si-OH* + $ZrCl_4$ = Si-O-Zr-Cl* + HCl B: Zr-OH* + ZrCl_4 = Zr-O-Zr-Cl* + HCl

Half-reaction with H₂O:

A: Si-O-Zr-Cl* + H_2O = Si-O-Zr-OH* + HCl B: Zr-O-Zr-Cl* + H_2O = Zr-O-Zr-OH* + HCl

Very similar reaction paths because the chemical reactions are very localized. Issues: Trapping at the intermediate state.

ZrCl₄ on the Si(100)-(2x1) Surface

- $ZrCl_4$ dissociates into $ZrCl_3(a)$ and Cl(a) on the Si(100)-(2x1) surface
- This results in Zr-Cl* and Si-Cl* surface sites

Reaction of H₂O with the Zr-CI* Surface Site

Reaction of H_2O with the Zr-Cl* site results in a Zr-OH* site in place of the Zr-Cl* site

Trapping-mediated mechanism:

- 1. Zr-Cl*-H₂O complex is formed
- 2. HCI(a) is formed from one H atom from H₂O and one CI atom from ZrCl₃

3. HCI desorbs

The H₂O complex is very stable!

Reaction of H₂O with the Si-CI* Surface Site

Direct dissociation reaction: 1.No stable complex formed 2.Reaction with H₂O with the Si-CI* site results in a Si-OH* site in place of the Si-CI* site

\$

Reaction of ZrCl₄ with the Si-OH* Surface

Reaction of ZrCl₄ with the Si-OH* Surface

Al₂O₃ ALD from TMA and Water

Mechanism of First Half Reaction

- TMA adsorbs
 molecularly on
 to AI-OH*
 surface site
- -CH₃ group from TMA reacts with H atom from surface –OH*
- Desorption of CH₄ and formation of -O-AI-(CH₃)₂*

Quantum Chemical Study of Al₂O₃ ALD

Mechanism of Second Half Reaction

- H₂O adsorbs molecularly on to Al-(CH₃)₂* surface site
- -CH₃ group from surface site reacts with H atom from H₂O
- Desorption of CH₄ and formation of Al-OH*

AI-CH₃*+H₂O→AI-OH*+CH₄

Advantages of Germanium

- Well understood Group IV material
- Narrower band gap which might allow Ge based transmitters and receivers in optical interconnects
- Higher mobility for both electrons and holes
- No interlayer oxide due to relative instability of GeO₂
- Less dependence of velocity saturation below 32nm node
- Significantly lower processing temperatures

Dissociative Adsorption of H₂O/H₂O₂

ZrCl₄ Initial Reaction on Ge-OH

Bridging Across the Trench

Summary

• Detailed mechanisms proposed for ZrO_2 , HfO_2 and Al_2O_3 ALD reactions. Additional reactions (for example elimination of H_2O by condensation reactions) calculated or being studied.

• Calculations show that submonolayer coverage mostly due to desorption of precursor from the surface, NOT steric effects for ALD of high-K using chloride precursors.

• Al₂O₃ ALD using TMA should have higher growth rates (monolayers/cycle).

• Calculations indicate that the hydroxylation of Ge surfaces with H_2O_2 is kinetically more favorable.

• ALD with ZrCl₄ precursors is more favorable when the second ligand bond is formed across the trench.

• Other precursors such as metal alkoxides, cyclopentadienyls or β -diketonates might result in faster deposition rates.

Acknowledgments: A graduate student Potential Energy Surface

Yuniarto Widjaja

CHARLES POWELL FOUNDATION, MOTOROLA, STANFORD, DARPA, SRC MARCO MSD Center

