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Abstract &

We have previously investigated components of mass balance (reactant utilization), energy
consumption (wafer heating), and manufacturing cycle time using a dynamic simulation of the Cu
CVD unit process as a prototype system. The simulator is based on a physical model of the process
and equipment, and captur es the essential dynamic behaviors as well as the time-integrated
behaviors through the process cycle. We have since expanded and enhanced these studies to obtain
a more comprehensive picture of the important factors in these metrics. We have incorporated
energy costs associated with pumping equipment and other components along with the previously
treated wafer heating component of energy usage in the Cu CVD process. In fact, pumping systems
not only consume more energy than wafer heating and other factors, but their energy usage varies
considerably depending on the details of the pump types chosen, both in average power through the
process cycle and in dynamic power fluctuations that occur during key transitions of the process
cycle. Accordingly, there may be real ESH benefit in working closely with component supplies to
choose components that are adequate to the product performance and manufacturing cost metrics,
and at the same time beneficial to ESH metrics. In addressing mass balance from the perspective of
reactant utilization and its relation to process cycle time as a function of pressure, temperature, and
gas flow rates, both win-win and trade-off situations emerge. The former is easy to treat, but a more
careful analysis methodology is needed to manage tradeoff situations. We have begun to outline an
approach to this challenge which includes consideration of manufacturing cost components and also
linkages to ESH impacts beyond the factory.
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Overview 8

) Understanding and enhancing the ESH aspects of semiconductor
manufacturing requires impact assessment for materials mass
balance and energy usage.

2) ESH benefits can only be obtained within the context consistent with
the requirements of technology performance and manufacturing
competitiveness.

3) Physically-grounded modeling and simulation is a valuable platform
for evaluating how ESH, manufacturing, and technology metrics
together change under situations of evolutionary or radical process
change.

4) We are employing physics-based dynamic simulators to extract
these multiple metrics as a function of process recipes and
equipment design.
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Status &

Cu CVD was chosen as a unit process testbed for assessment of ESH metrics
within context of manufacturing and performance measures.

Previous results:

— Mass balance on Cu precursor utilization and process cycle time, revealing some
win-win situations for these metrics, along with tradeoff situations.

— Energy consumption associated with wafer heating, showing win-win situation for
higher temperature (power) to achieve shorter process cycles and correspondingly
lower energy consumption

Current results:

— Energy consumption analysis expanded to include multiple terms, identifying
pumping system energy as the dominant contribution and the existence of significant
differences in power requirements for different types of pumps

— Further evaluation of tradeoff situations in mass balance, seeking means to combine
disparate ESH metrics on the bases of economics and environment
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Modeling and Simulation
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BASIC PREMISE:

Exploit modeling and simulation to reveal trends and insight into complex system
behavior

Use modeling/simulation results to prioritize and justify real experiments to determine if
predicted improvements can be realized

® Build models and simulations which combine:
— Physics, chemistry, etc. wherever possible
— Empirical behavior (black box) wherever needed to complete a systems-level picture

— Reduced-order models to enable construction of larger-scale systems models
involving multiple complex components

¢ Extract both dynamic (transient) phenomena and time-integrated metrics

® Use virtual experiments (models & simulations) to investigate qualitative and
semi-quantitative systems-level behavior to identify opportunities for
potentially significant improvement

®* Where significant improvement seems possible, carry out real experiments for
optimization and model validation/improvement
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Available as Schumacher CupraSelect™
Liquid at R.T.
tmvs = trimethylvinylsilane C;H,,Si
hfac = hexafluoroacetylacetonate dihydrate
C;HFO,
= Delivered to the showerhead using DLI
system.

PROCESS CONDITIONS FOR
SIMULATION

Substrate Temp 150 - 250°C (180 - 200°C)
Vaporizer, Gas Lines and Chamber at 60-
65°C.

Ar/He CarrierGas Flow 50 — 500 sccm (100
sccm)

CupraSelect™ Liquid Flow
0.1 — 0.25 cc/min (for seed 200 - 500 A)
up to 2.5 cc/min (for fill 200 - 500 nm)
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Dynamic behavior of process and
equipment through the process
cycle is revealed by simulator,
e.g.,

Total chamber pressure
Precursor partial-pressure
Throttle valve conductance

Detailed physical response has
more complex time-
dependence than might be
expected from nominal process
recipe, e.g.,

Precursor partial pressure shows
dynamic effects associated

with changing residence time
in reactor
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Overhead time
Ramp-up and ramp-down
time
Could include other factors

(e.g., wafer exchange
time)

Cycle time = nominal
process time + overhead
time

Manufacturing and ESH
metrics depend on full
process cycle time

Motivation for simulation of
time-integrated metrics
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Sources of Energy Use:

Substrate Heater, Process Pumps, Process
Chamber, Vaporizer & Gas Lines Heating,
DLI System Pumps, Pre-Heated Precursor,
Process & Equipment Control Units, PC’s,
etc.

Power Sources - Pareto Analysis "

Sources of Energy Use Power (KW) per Unit
Pump Package 3.26
MFC 0.0267
DLI 0.2
Heated Valve 0.03
Pressure Gauge 0.005 P
RF Power 05 <
Programmable Controller 0.15 D
Exhaust Valve Controller 0.05
PC 0.2
Substrate Heater 0.2

Data sources: (1) Leybold Vacuum Product Inc.
(3) Ulvac Technologies Inc.

(2) MKS Instrument

8 MFC
O DLI
O Heat

aQ RFP

| pC
8 Subs

O Punmp Package

8 Pressure Gauge

8 Programmable Controller

O Exhaust Valve Controller

ed Valve

ower

trate Heater
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Substrate Heater:
Heater kept at high temp at all times
Radiative Heat Loss ~ (T, )*
Conductive Heat Loss ~ (T,-T,)
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Pump Package:

0-

Power and Energy

Pumps kept running at all times = significant
energy consumption

Pump power is a function of pump inlet
pressure = power difference during process
time and pump-out time
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Pump system is the dominant energy

consumption source in Cu CVD process
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Pump System S
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AUERSIT
Optimizing Energy Consumption in Cu CVD &8
ARy LT
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Mass Balance Optimization: e

Cycle Time & Reactant Utilization Dol
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Mass Balance Optimization: e
Cycle Time & Reactant Utilization D
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Utility Function Analysis &

Tradeoff situations pose a common

and substantial challenge Value = a x; + 3 xUtilization
—  Here, increasing flow rate reduces CycleTime
materials utilization while improving
cycle time

QUESTION: how do we combine
these very dissimilar metrics?

ANSWER: systems engineering tells
us to define a utility function that
depends on the different metrics,
e.g. the example in the expression
above

Calculate Utility for various a/f8 - ,; Utility

Note that Utility is optimized at low
flow rate for small a/f3 (where
utilization is primary determinant of
Utility), and correspondingly for the
other case

Defining a meaningful Utility
function is a major challenge
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Utility Function for ESH Assessment -}

¢ Utility functions for ESH impact Grand Utility
. Function
assessment should include:
— Economic factors, determined as COO

— Environmental factors, addressing in-
fab and direct upstream and
downstream consequences of in-fab

Environmental

practice Effect
® These link to UCB and MIT activities
— EnV-S analysis of ESH COO
— MIT assessment of upstream multipliers
on in-fab process choices -
P Capital $ Throughput Utilization g‘;ﬂ;g

¢ Use highly reduced Cost-of-Ownership
model for Cu CVD process to begin
such an evaluation at the unit process
level

Process & Design
Parameters
(P, T, flow)
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Conclusions 5.

Expanded analysis for Cu CVD shows that pump system configuration is the
dominant component of energy consumption

— Opportunity for improvements in concert with component suppliers

— Thoroughness of Pareto analysis is essential

— (Not all technical factors in pump choice yet addressed)

Evaluation of mass balance reveals clear tradeoffs between competing
manufacturing and ESH metrics

— Assume that such tradeoffs are common situation
— Must deal with constructing sensible utility functions

Economics and environmental perspectives drive different components of
ESH assessment
— Economics (COO) in the fab

— Environmental coupling to mass and energy consequences directly relating to in-fab
practice

Initial ESH COO evaluation for Cu CVD indicates relatively broad process
parameter regime with minimized COO
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