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Project Sub-Task

• Task A-4: Waste minimization

– Subtask A-4-1: Modeling of pattern dependency effects (Boning)
– Subtask A-4-2: Fluid dynamics analysis and tribological characterization

(Philipossian)

• Task A-5: Fundamental pad characterization and modeling
(Philipossian & Beaudoin)

• Task A-6: Alternative planarization technologies

– Subtask A-6-1: Fixed abrasive pads (Raghavan)
– Subtask A-6-2: Abrasive free slurries (Boning)
– Subtask A-6-3: Coupled plating and planarization processes (Boning)
– Subtask A-6-4: Controlled-atmosphere planarization (Philipossian)

• Task A-7: Post-planarization waste minimization (Philipossian) 
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Planarization Team & the EHS Pyramid
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Overall Motivation

• Slurry is the largest contributor to CMP COO 
(8000 WSPW, 200-mm factory, 5 Cu layers):

– ~ 6,000,000 liters of slurry per year
– ~ 20,000,000 USD of slurry per year
– ~ 300 metric tons of solid waste per year
– ~ 400,000,000 liters of UPW per year

• Increasing pad life will lead to:

– Reduced pad consumption
– Increased polisher availability 

• (i.e. capital cost avoidance)
– Reduced monitor wafer consumption

• (and consumables associated with polisher 
re-qualification) 

80

83

86

89

92

95

0 300 600 900

Pad Life (polishes per pad)

To
ol

 A
va

ila
bi

lit
y 

(%
)

Slurry
45%

Equipment
22%

Labor
8%

Other
9%

Pad
16%



5

Apparatus

Diamond Grit Plate
with Rotation & Translation

Applied Wafer 
Pressure

Sliding Friction TableStrain Gauge

 
Parameter Scaling Factor Speedfam-IPEC 472 Rotopol-35 

Down Pressure 1 4 psi 4 psi 

Platen Speed Reynolds Number 

Relative pad-wafer 
velocity of 

0.5 m per second 
(30 rpm) 

Relative pad-wafer 
velocity of 

0.5 m per second 
(55 rpm) 

Platen Diameter / 
Wafer Diameter D platen / D wafer 51 cm / 15 cm  31 cm / 9 cm 

Platen Diameter / 
Wafer Diameter D platen / D wafer 51 cm / 20 cm  31 cm / 12 cm 

Slurry Flow Rate Platen Surface Area 175 cc per minute 65 cc per minute 
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Apparatus
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Lubrication Theory and the CMP Process

Boundary Lubrication

h ~ Ra

h ~ 0

h >> Ra

Partial Lubrication

Hydro-dynamic Lubrication

)()(
)()(
RaP

VSo
app ×

×= µ

Relative pad-wafer velocity … 
Dependent on polisher 
geometry

Slurry viscosity … Dependent on 
slurry type & abrasive concentration
(physically measured)

Applied pressure

Pad surface roughness 
(measured by profilometry)
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Preston Equation

(P)(V) k(kRate Removal )c m=

• The removal rate was plotted against (Pressure * Velocity)

• The slope obtained is the rate constant (k-value = km * kc)

– km = mechanical rate constant

– kc = chemical rate constant 
• Error bars in the Removal Rate charts correspond to +/- 1 sigma

Removal Rate Equation
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• To characterize a novel pad design 
that incorporates water soluble 
particles (WSP) embedded in the pad 
composition as it relates to:

– Pad decay as a result of conditioning 
and glazing 

– Tribology
– Removal Rate
– Temperature

• Temperature increase of the bow wave
• Temperature increase of the pad

• To perform a comparative analysis of:
– Commercial pad to JSR pads

• Fixed porosity vs. controlled porosity

Motivation

50 um

Rodel IC-1000 (new) 
Porous Pad

JSR Pad with WSP (new)  
Controlled Porosity Pad

20 um
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JSR Self-Regenerating Pads with Controlled Porosity

Process of Surface Self Regeneration via WSP

20 um 20 um

JSR Pad with Std WSP (new) JSR Pad with Std WSP (used)
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• Pads (all are k-grooved)
– JSR Standard WSP
– JSR No WSP
– JSR High WSP
– JSR Standard WSP 

• lower matrix hardness
– Rodel IC-1000

Pad Descriptions

20 um

Standard WSP

20 um

No WSP

20 um

High WSP

20 um

Std WSP – Low Matrix 
Hardness

Rodel IC-1000

50 um
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Glazing

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 100 200 300 400 500
Time (min)

C
O

F

Pad Glazing

Continuous 5-Hour Glaze with 
200 Grit Pre-Conditioning• Pad Glazing

– During polishing, the cavities 
and pores on the surface of 
a pad will get filled with 
slurry  

– Due to the pressure and 
temperature increase during 
polishing, the slurry starts to 
“glaze” the pad, or in other 
words, precipitate on the pad

– Pad glazing is a method to 
test the decay of a pad.  It 
determines when a pad 
starts to decay and the rate 
of its decay 



13

10 um

10 um

10 um

silicon

carbon

oxygen

X-Ray Analysis - Elemental Images 

• Area Scan for Compositional Images
– Scan over glazed region and 

exposed pad
– Brightness on the compositional 

image corresponds to high signal of 
that element

50 um

Continuous 5-Hour Glaze with 
200 Grit Pre-Conditioning



14

Approximate Thickness of Glazed Layer 
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Pad Glazing JSR Standard WSP

• COF is constant for JSR standard grooved and IC-1000 k-groove pads 
during glazing

• IC-1000 Flat pad demonstrates a decrease in COF while glazing
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Pad Decay In-Situ vs. Ex-Situ Conditioning

• In-situ
– Conditioned pad and polished 

wafer in-situ for 90 min
• Ex-situ

– Polished wafer for 5 minutes 
with no conditioning

– Conditioned pad for 5 minutes 
with no polishing

– Repeat until total polishing 
time is 90 minutes and total 
conditioning time is 90 
minutes

In-situ Redo 
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JSR Standard WSP Pad
• Lubrication Region 

– Grooved pads exhibit boundary 
lubrication for the entire range of 
Sommerfeld Numbers tested

• Removal Rate
– The Standard WSP pad 

demonstrates a linear 
relationship with P x V 

– There was a decrease in 
RR at the highest P x V 
setting (6 PSI x 0.93 m/s) 
during in-situ conditioning

– Ex-situ conditioning 
resolves the above 
anomalous behavior 
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JSR High WSP Pad
• Lubrication Region 

– Grooved pads exhibit boundary 
lubrication for the entire range of 
Sommerfeld Numbers tested

• Removal Rate
– The Standard WSP pad 

demonstrates a linear 
relationship with P x V 

– There was a decrease in 
RR at the highest P x V 
setting (6 PSI x 0.93 m/s) 
during in-situ conditioning

– Ex-situ conditioning 
resolves the above 
anomalous behavior

JSR (high WSP)
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Rodel IC-1000 Pad
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Rodel IC-1000, K-Groove
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Rodel IC-1000

• Lubrication Region 
– Grooved pads exhibit boundary 

lubrication for the entire range of 
Sommerfeld Numbers tested

– Rodel IC-1000 has a lower COF 
than the JSR Standard WSP

Rodel IC-1000

• Removal Rate
– The Rodel IC-1000 pad 

demonstrates a linear 
relationship with P x V 

– There was no decrease in 
RR at the highest P x V 
setting (6 PSI x 0.93 m/s) 
during in-situ conditioning

Rodel IC-1000
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Pad Conditioning Methods
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• COF varies as a function of pad conditioning
– Ex-situ conditioning shows a decrease in COF with the Standard and High WSP 

pads compared to in-situ conditioning
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• Ex-Situ conditioning shows that rate constant increases with higher WSP 
content compared to the standard amount 

• In-Situ conditioning shows that rate constant deceases with higher WSP 
content compared to the standard amount

• JSR no WSP pad shows the highest rate constant for in-situ conditioning
• JSR low matrix hardness pad shows the highest rate constant for ex-situ 

conditioning
Removal Rate
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Correlating ILD RR to Average COF

IC-1000 Flat ; IC-1000 XY ; IC-1000 Perforated ; 
IC-1000 K ; IC-1400 K ; 

FX-9 Flat ; FX-9 Perforated
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9 ~ 25 wt. % PL-4217 slurry

10  wt. % JSR slurry
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Correlating Tribological Indicator to Rate Constant 

IC-1000 Flat ; IC-1000 XY ; IC-1000 
Perforated ; IC-1000 K ; IC-1400 K ; 

FX-9 Flat ; FX-9 Perforated

R-Square = 0.66
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Infrared Temperature Measurement During CMP

• IR camera (on loan from MIT) can measure temperatures of the pad and 
slurry during the CMP process

– Bow Wave: Slurry build up at the leading edge of the wafer
– Bow Wave Temperature: Slurry temperature before it goes under the wafer
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Polish Time = 60 secondsPolish Time = 3 seconds

Polish Conditions: 6PSI, 0.93m/s

• Temperature increases at the bow wave over a 1 minute polish
• Temperature increases at the pad over a 1 minute polish 
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Infrared Temperature Measurement During CMP

Polish Time = 60 secondsPolish Time = 3 seconds

Polish Conditions: 2PSI, 0.31m/s
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• Temperature does not increase at the bow wave over a 1 
minute polish

• Temperature does not increase at the pad over a 1 minute 
polish 
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• Temperature analysis is 
performed over the indicated 
spots

• A “real time” temperature 
measurement is recorded from 
the moment the wafer touches 
the pad
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IC-1000 Ex-Situ
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• Temperature increases with P x V 
for both the bow wave and the pad

• As P x V increases, the 
temperature difference between the 
pad and the bow wave increases

• IC-1000 bow wave temperature is 
1.2 oC higher than the Std WSP 
pad

• IC-1000 pad temperature is 1.5 oC 
higher than the Std WSP pad

IC-1000

IR Temperature Results Ex-Situ Pad Conditioning 
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• Tribology - JSR Grooved Pads 
– All grooved pads remained in the boundary lubrication region for the entire range 

of Sommerfeld Numbers tested

• Pad conditioning on pads with WSP
– JSR pads are unique due to presence of WSPs which cause self regeneration of 

the pad surface 
– WSP causes anomalous behavior at high P x V settings in conjunction with in-situ 

conditioning by causing the RR to decrease at the highest setting (6PSI & 0.93m/s)
– It is not necessary to condition the surface of the pad while polishing 

• In-situ conditioning is too harsh on the surface and may cause particles to dislodge rather 
than dissolve

• Relationship to previously obtained universal COF & “beta” curves
– As a first approximation, frictional and tribological characteristics of JSR pads 

seem to follow trends observed with other pads and slurries
– Differences are speculated to be due to varying amounts of WSP

• Thermal analysis
– The temperature increases at the bow wave with P x V
– The temperature increases on the pad surface with P x V
– Although bow wave and pad temperature differences are small (1-2 oC increase) 

between each pad type, it may be significant since the activation energies are yet 
to be determined

Conclusions & Observations
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Future Plans
• Water Soluble Particles

– Determine dissolution rates of the WSP

– Temperature effects on the WSP

– pH effects on WSP

• Thermal Analysis
– Analysis of temperature trends
– Correlation to dissolution rates of WSP and heats of mixing

• Thermal and Dynamic pad properties
– Pad softening occurring at standard CMP operating temperatures
– Pad toughening  
– Cross linking and extent of free volume of pad composition
– Glass transition temperatures

• Wafer Pressure Analysis
– Localized high pressure points
– WSP content effects on pressure

• Collaboration with Arizona State University to model removal rate in terms 
of pad surface and mechanical features
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