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Overall Vlotivation

Slurry is the largest contributor to CMP COO

(8000 WSPW, 200-mm factory, 5 Cu layers):

Increasing pad life will lead to:

~ 6,000,000 liters of slurry per year
~ 20,000,000 USD of slurry per year

~ 300 metric tons of solid waste per year
~ 400,000,000 liters of UPW per year
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Appaldius

Parameter Scaling Factor Speedfam-IPEC 472 Rotopol-35
Down Pressure 1 4 psi 4 psi
Relative pad-wafer Relative pad-wafer
velocity of velocity of
Platen Speed Reynolds Number 0.5 m per second 0.5 m per second
(30 rpm) (55 rpm)
Platen Diameter / D /D 51cm/15cm 31cm/9cm
Wafer Diameter platen 1 1 wafer
Platen Diameter /
Slurry Flow Rate Platen Surface Area 175 cc per minute 65 cc per minute

Applied Wafer
Pressure
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Diamond Grit Plate
with Rotation & Translation
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Strain Gauge / M Sliding Friction Table 7/ %
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Coefficient of Friction (unitless)

Lubrication Iheory and the CMP Process

Slurry viscosity ... Dependent on
rw slurry type & abrasive concentrati
o O h~0 (physically measured)
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Removal Rate Equation

Preston Equation

Removal Rate = (k. k) (P)(V)

The removal rate was plotted against (Pressure * Velocity)
The slope obtained is the rate constant (k-value = km * kc)
— km = mechanical rate constant

— kc = chemical rate constant
Error bars in the Removal Rate charts correspond to +/- 1 sigma



Motivation

« To characterize a novel pad design
that incorporates water soluble

particles (WSP) embedded in the pad
composition as it relates to:

— Pad decay as a result of conditioning

and glazing ,
— Tribology AR
— Removal Rate JSR Pad with WSF’ (new)
Controlled Porosity Pad
— Temperature

» Temperature increase of the bow wave
» Temperature increase of the pad

« To perform a comparative analysis of:

— Commercial pad to JSR pads
» Fixed porosity vs. controlled porosity

l 4 LK WS
i

Rodel IC-1000 (new) ﬂ




Process of Surface Self Regeneration via WSP

JSR Self-Regenerating Pads with Controlled Porosity
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Pad Descriptions

Pads (all are k-grooved)

JSR Standard WSP
JSR No WSP

JSR High WSP
JSR Standard WSP

 Jower matrix hardness

Rodel IC-1000

Rodel IC-1000

High WSP

Std WSP — Low Matrix ¥A
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« Pad Glazing

— During polishing, the cavities
and pores on the surface of
a pad will get filled with
slurry

— Due to the pressure and
temperature increase during
polishing, the slurry starts to
“glaze” the pad, or in other
words, precipitate on the pad

— Pad glazing is a method to
test the decay of a pad. It
determines when a pad
starts to decay and the rate
of its decay
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X-Ray Analysis - Elemental Images

Continuous 5-Hour Glaze with

200 Grit Pre-Conditioning
silicon
carbon
Area Scan for Compositional Images
— Scan over glazed region and
exposed pad oxygen
— Brightness on the compositional
image corresponds to high signal of ﬁ




Approximate Thickness of Glazed Layer




Pad Glazing JSR Standard WSP

COF is constant for JSR standard grooved and IC-1000 k-groove pads
during glazing

|IC-1000 Flat pad demonstrates a decrease in COF while glazing
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Pad Decay In-Situ vs. Ex-Situ Conditioning

In-Situ
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G 03 - wafer in-situ for 90 min
0.2 -  Ex-situ
0.1 — Polished wafer for 5 minutes
0 — T with no conditioning
0O 10 20 30 40 S50 60 70 80 90 100 110 120 . .
Time (min) — Conditioned pad for 5 minutes
with no polishing
o6 Ex-Situ — Repeat until total polishing
' time is 90 minutes and total
05 3 { Y conditioning time is 90
o %\’\\.\'S&a minutes
S 03 -
O
0.2
0.1
O I I I I I 1

0O 10 20 30 40 50 60 70 80 90 100 110 120 ﬁ



HTTUUIVYY XX TACHTTUVdAI TANAlT

JSR Standard WSP Pad

* Lubrication Region

— Grooved pads exhibit boundary
lubrication for the entire range of

Sommerfeld Numbers tested
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JoR High WoP Paad

Lubrication Region

Grooved pads exhibit boundary
lubrication for the entire range of

Sommerfeld Numbers tested

JSR High WSP
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RR at the highest P x V
setting (6 PSI x 0.93 m/s)
during in-situ conditioning
Ex-situ conditioning
resolves the above
anomalous behavior
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rodel 1C-1000

* Lubrication Region

— Grooved pads exhibit boundary
lubrication for the entire range of
Sommerfeld Numbers tested

— Rodel IC-1000 has a lower COF
than the JSR Standard WSP

Rodel 1C-1000
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COF

COF Comparison of Grooved Pads

COF varies as a function of pad conditioning

Ex-situ conditioning shows a decrease in COF with the Standard and High WSP
pads compared to in-situ conditioning
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Removal Rate Comparison of Grooved Pads

Ex-Situ conditioning shows that rate constant increases with higher WSP

content compared to the standard amount

In-Situ conditioning shows that rate constant deceases with higher WSP

content compared to the standard amount

JSR no WSP pad shows the highest rate constant for in-situ conditioning
JSR low matrix hardness pad shows the highest rate constant for ex-situ

conditioning

Removal Rate using Preston Equation
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Characterizing & Quantifying Lubrication Regimes
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Correlating Tribological Indicator to Rate Constant
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INnfrared |emperature vieasurement vuring Civir

. IR camera (on loan from MIT) can measure temperatures of the pad and
slurry during the CMP process

— Bow Wave: Slurry build up at the leading edge of the wafer
— Bow Wave Temperature: Slurry temperature before it goes under the wafer

Polish Conditions: 6PSI, 0.93m/s

35.0°C
~ 34

- 32

24.0°C

Polish Time = 3 seconds Polish Time = 60 seconds
. Temperature increases at the bow wave over a 1 minute polish
. Temperature increases at the pad over a 1 minute polish




Infrared Temperature Measurement During CMP

Polish Conditions: 2PSI, 0.31m/s

Polish Time = 3 seconds Polish Time = 60 seconds
. Temperature does not increase at the bow wave over a 1
minute polish
. Temperature does not increase at the pad over a 1 minute

polish
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IR Temperature Results Ex-Situ Pad Conditioning

Standard WSP
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Temperature increases with P x V
for both the bow wave and the pad

As P x V increases, the
temperature difference between the
pad and the bow wave increases

IC-1000 bow wave temperature is
1.2 °C higher than the Std WSP
pad

IC-1000 pad temperature is 1.5 °C
higher than the Std WSP pad
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Conclusions & Observations

Tribology - JSR Grooved Pads

- All grooved pads remained in the boundary lubrication region for the entire range
of Sommerfeld Numbers tested

Pad conditioning on pads with WSP

- JSR pads are unique due to presence of WSPs which cause self regeneration of
the pad surface

— WSP causes anomalous behavior at high P x V settings in conjunction with in-situ
conditioning by causing the RR to decrease at the highest setting (6PSI & 0.93m/s)

— It is not necessary to condition the surface of the pad while polishing

In-situ conditioning is too harsh on the surface and may cause patrticles to dislodge rather
than dissolve

Relationship to previously obtained universal COF & “beta” curves

— As a first approximation, frictional and tribological characteristics of JSR pads
seem to follow trends observed with other pads and slurries

— Differences are speculated to be due to varying amounts of WSP

Thermal analysis
- The temperature increases at the bow wave with P x V
- The temperature increases on the pad surface with P x V

- Although bow wave and pad temperature differences are small (1-2 °C increase)
between each pad type, it may be significant since the activation energies are yet
to be determined



ruture rlans

Water Soluble Particles
— Determine dissolution rates of the WSP

— Temperature effects on the WSP
— pH effects on WSP

Thermal Analysis
— Analysis of temperature trends
— Correlation to dissolution rates of WSP and heats of mixing

Thermal and Dynamic pad properties
— Pad softening occurring at standard CMP operating temperatures
— Pad toughening
— Cross linking and extent of free volume of pad composition
— Glass transition temperatures

Wafer Pressure Analysis
— Localized high pressure points
— WSP content effects on pressure

Collaboration with Arizona State University to model removal rate in terms H
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