Characterization of CMP Pads Containing Embedded Water Soluble Particles

Leslie Charns & Ara Philipossian

University of Arizona Department of Chemical & Environmental Engineering Tucson, AZ USA

© 2002

Project Sub-Task

Task	A-4:	Waste minimization			
-	Subtask A-4-1: Subtask A-4-2:	Modeling of pattern dependency effects (Boning) Fluid dynamics analysis and tribological characterization (Philipossian)			
Task	A-5:	Fundamental pad characterization and modeling (Philipossian & Beaudoin)			
Task	A-6:	Alternative planarization technologies			
_	Subtask A-6-1:	Fixed abrasive pads (Raghavan)			
_	Subtask A-6-2:	Abrasive free slurries (Boning)			
_	Subtask A-6-3:	Coupled plating and planarization processes (Boning)			
-	Subtask A-6-4:	Controlled-atmosphere planarization (Philipossian)			
Task	A-7:	Post-planarization waste minimization (P	hilipossia		

Planarization Leam & the EHS Pyramid

Overall Motivation

Slurry is the largest contributor to CMP COO (8000 WSPW, 200-mm factory, 5 Cu layers):

- ~ 6,000,000 liters of slurry per year
- ~ 20,000,000 USD of slurry per year
- ~ 300 metric tons of solid waste per year
- ~ 400,000,000 liters of UPW per year

Increasing pad life will lead to:

- Reduced pad consumption
- Increased polisher availability
 - (i.e. capital cost avoidance)
- Reduced monitor wafer consumption
 - (and consumables associated with polisher re-qualification)

Apparatus

Parameter	Scaling Factor	Speedfam-IPEC 472	Rotopol-35
Down Pressure	1	4 psi	4 psi
Platen Speed	Reynolds Number	Relative pad-wafer velocity of 0.5 m per second (30 rpm)	Relative pad-wafer velocity of 0.5 m per second (55 rpm)
Platen Diameter / Wafer Diameter	D _{platen} / D _{wafer}	51 cm / 15 cm	31 cm / <mark>9 cm</mark>
Platen Diameter / Wafer Diameter	D _{platen} / D _{wafer}	51 cm / 20 cm	31 cm / <mark>12 cm</mark>
Slurry Flow Rate	Platen Surface Area	175 cc per minute	65 cc per minute

Apparatus

Lubrication Theory and the CMP Process

Removal Rate Equation

Preston Equation

Removal Rate =
$$(k_m k_c) (P)(V)$$

- The removal rate was plotted against (Pressure * Velocity)
- The slope obtained is the rate constant (k-value = km * kc)
 - km = mechanical rate constant
 - kc = chemical rate constant
- Error bars in the Removal Rate charts correspond to +/- 1 sigma

Motivation

- To characterize a novel pad design that incorporates water soluble particles (WSP) embedded in the pad composition as it relates to:
 - Pad decay as a result of conditioning and glazing
 - Tribology
 - Removal Rate
 - Temperature
 - Temperature increase of the bow wave
 - Temperature increase of the pad

- To perform a comparative analysis of:
 - Commercial pad to JSR pads
 - Fixed porosity vs. controlled porosity

JSR Pad with WSP (new) Controlled Porosity Pad

Rodel IC-1000 (new)

Process of Surface Self Regeneration via WSP

JSR Self-Regenerating Pads with Controlled Porosity

JSR Pad with Std WSP (new)

JSR Pad with Std WSP (used)

Pad Descriptions

Pads (all are k-grooved)

- JSR Standard WSP
- JSR No WSP
- JSR High WSP
- JSR Standard WSP
 - lower matrix hardness
- Rodel IC-1000

Standard WSP

No WSP

Rodel IC-1000

High WSP

Std WSP – Low Matrix 🎵

Pad Glazing

- Pad Glazing
 - During polishing, the cavities and pores on the surface of a pad will get filled with slurry
 - Due to the pressure and temperature increase during polishing, the slurry starts to "glaze" the pad, or in other words, precipitate on the pad
 - Pad glazing is a method to test the decay of a pad. It determines when a pad starts to decay and the rate of its decay

Continuous 5-Hour Glaze with 200 Grit Pre-Conditioning

X-Ray Analysis - Elemental Images

Continuous 5-Hour Glaze with 200 Grit Pre-Conditioning

- Area Scan for Compositional Images
 - Scan over glazed region and exposed pad
 - Brightness on the compositional image corresponds to high signal of

silicon

carbon

oxygen

Approximate Thickness of Glazed Layer

Pad Glazing JSR Standard WSP

- COF is constant for JSR standard grooved and IC-1000 k-groove pads during glazing
- IC-1000 Flat pad demonstrates a decrease in COF while glazing

Pad Decay In-Situ vs. Ex-Situ Conditioning

0.2

0.1

0

0

10

20

30

40

50

60

70

80

90 100 110 120

- In-situ
 - Conditioned pad and polished wafer in-situ for 90 min
- Ex-situ
 - Polished wafer for 5 minutes with no conditioning
 - Conditioned pad for 5 minutes with no polishing
 - Repeat until total polishing time is 90 minutes and total conditioning time is 90 minutes

moology & Removal Rate

JSR Standard WSP Pad

- Lubrication Region
 - Grooved pads exhibit boundary lubrication for the entire range of Sommerfeld Numbers tested

$$So = \frac{(u) \times (\mu)}{(P_{app}) \times (Ra)}$$

JSR Standard WSP

- Removal Rate
 - The Standard WSP pad demonstrates a linear relationship with P x V
 - There was a decrease in RR at the highest P x V setting (6 PSI x 0.93 m/s) during in-situ conditioning
 - Ex-situ conditioning resolves the above anomalous behavior

JSR High WSP Pad

- Lubrication Region
 - Grooved pads exhibit boundary lubrication for the entire range of Sommerfeld Numbers tested

JSR High WSP

- Removal Rate
 - The Standard WSP pad demonstrates a linear relationship with P x V
 - There was a decrease in RR at the highest P x V setting (6 PSI x 0.93 m/s) during in-situ conditioning
 - Ex-situ conditioning resolves the above anomalous behavior

Rodel IC-1000

Rodel IC-1000

- Lubrication Region
 - Grooved pads exhibit boundary lubrication for the entire range of Sommerfeld Numbers tested
 - Rodel IC-1000 has a lower COF than the JSR Standard WSP

Rodel IC-1000

Removal Rate

- The Rodel IC-1000 pad demonstrates a linear relationship with P x V
- There was no decrease in RR at the highest P x V setting (6 PSI x 0.93 m/s) during in-situ conditioning

Pressure x Velocity (Pa x A/min)

COF Comparison of Grooved Pads

- COF varies as a function of pad conditioning
 - Ex-situ conditioning shows a decrease in COF with the Standard and High WSP pads compared to in-situ conditioning

Removal Rate Comparison of Grooved Pads

- Ex-Situ conditioning shows that rate constant increases with higher WSP content compared to the standard amount
- In-Situ conditioning shows that rate constant deceases with higher WSP content compared to the standard amount
- JSR no WSP pad shows the highest rate constant for in-situ conditioning
- JSR low matrix hardness pad shows the highest rate constant for ex-situ conditioning

Removal Rate using Preston Equation

Correlating ILD RR to Average COF

JSR Pads In-situ Conditioning

JSR Pads Ex-Situ Conditioning

-1000 Flat ; IC-1000 XY ; IC-1000 Perforated IC-1000 K ; IC-1400 K ; FX-9 Flat ; FX-9 Perforated

Removal Rate = $(k_m k_c)(P)(V)$

Characterizing & Quantifying Lubrication Regimes

Correlating Tribological Indicator to Rate Constant

Infrared Temperature Measurement During CMP

- IR camera (on loan from MIT) can measure temperatures of the pad and slurry during the CMP process
 - <u>Bow Wave</u>: Slurry build up at the leading edge of the wafer
 - <u>Bow Wave Temperature</u>: Slurry temperature before it goes under the wafer

Polish Conditions: 6PSI, 0.93m/s

Polish Time = 3 seconds

Polish Time = 60 seconds

- Temperature <u>increases</u> at the bow wave over a 1 minute polish
- Temperature increases at the pad over a 1 minute polish

Infrared Temperature Measurement During CMP

Polish Conditions: 2PSI, 0.31m/s

Polish Time = 3 seconds

Polish Time = 60 seconds

- Temperature <u>does not increase</u> at the bow wave over a 1 minute polish
- Temperature <u>does not increase</u> at the pad over a 1 minute polish

Infrared Temperature Analysis

- Temperature analysis is performed over the indicated spots
 - A "real time" temperature measurement is recorded from the moment the wafer touches the pad

2 PSI, 0.31 m/s

IR Temperature Results Ex-Situ Pad Conditioning

36

34

32

30

28

26

24

0

200

IC-1000

400

600

- Temperature increases with P x V for both the bow wave and the pad
 - As P x V increases, the temperature difference between the pad and the bow wave increases
 - IC-1000 bow wave temperature is 1.2 °C higher than the Std WSP pad
 - IC-1000 pad temperature is 1.5 °C higher than the Std WSP pad

Conclusions & Observations

- Tribology JSR Grooved Pads
- All grooved pads remained in the boundary lubrication region for the entire range of Sommerfeld Numbers tested
- Pad conditioning on pads with WSP
- JSR pads are unique due to presence of WSPs which cause self regeneration of the pad surface
- WSP causes anomalous behavior at high P x V settings in conjunction with in-situ conditioning by causing the RR to decrease at the highest setting (6PSI & 0.93m/s)
- It is not necessary to condition the surface of the pad while polishing
 - In-situ conditioning is too harsh on the surface and may cause particles to dislodge rather than dissolve
- Relationship to previously obtained universal COF & "beta" curves
 - As a first approximation, frictional and tribological characteristics of JSR pads seem to follow trends observed with other pads and slurries
 - Differences are speculated to be due to varying amounts of WSP

Thermal analysis

- The temperature increases at the bow wave with P x V
- The temperature increases on the pad surface with P x V
- Although bow wave and pad temperature differences are small (1-2 °C increase) between each pad type, it may be significant since the activation energies are yet to be determined

Future Plans

- Water Soluble Particles
 - Determine dissolution rates of the WSP
 - Temperature effects on the WSP
 - pH effects on WSP
- Thermal Analysis
 - Analysis of temperature trends
 - Correlation to dissolution rates of WSP and heats of mixing
- Thermal and Dynamic pad properties
 - Pad softening occurring at standard CMP operating temperatures
 - Pad toughening
 - Cross linking and extent of free volume of pad composition
 - Glass transition temperatures
- Wafer Pressure Analysis
 - Localized high pressure points
 - WSP content effects on pressure
- Collaboration with Arizona State University to model removal rate in terms

Acknowledgements

- Duane Boning
- Gary Chandler
- Lorenzo Lujan
- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Tufts University (collaboration & technology exchange)
- JSR Corp
- Fujimi Incorporated (slurry donation)
- Freudenberg Nonwovens (pad donation)
- Rodel (pad donation)

