A LCA Approach for Making Greener Semiconductor Products

Presented by Tao Zhu, Graduate Student Department of ChEE University of Arizona

Current Environmental Situation

The semiconductor industry is a relatively clean industry.

The entire electronic equipment industry (semiconductor or otherwise) in 2000 accounted for only **35 million pounds** of total releases. This is less than the total of the **TWO largest electric utility facilities in the US (roughly 40 million pounds combined)**.

In Arizona the semiconductor industry is responsible for roughly 3% of releases from the entire electric utility and electronic equipment manufacturing facilities categories.

Current Situation (View from the Outside)

"Chip making is sometimes called a 'clean industry' because of the images of technicians in white lab suits working in ultra-clean rooms with shiny pristine silicon wafers. But it is estimated that on the average day of operations at a chip-making plant four million gallons of wastewater are produced, and thousands of gallons of corrosive hazardous materials, like hydrochloric and sulfuric acid, are used. However, there have been few instances of hazardous spills."

source: SpaceDaily, Agence France-Presse

Production Model

However, in semiconductor manufacturing, there is but one product, with a large number incoming material streams and outgoing waste streams.

Production Model Compared to Petroleum

For example, in **petroleum manufacturing**, almost all of the incoming raw material finds its way into some product. There is little waste.

The semiconductor manufacturing industry must find ways to reduce the amount of raw materials used, while also finding uses for the effluent materials whose purity is no longer acceptable for chip manufacturing.

Current Analysis Tools

Although we are "clean", are we sustainable? Different sustainability measures: Target Method from Agere/NJIT. EcoIndicator95.

No consensus yet on how to measure sustainability as defined by the Brundtland report.

Current Analysis Tools

Preliminary studies from NJIT show that silicon wafer manufacturing is very far from being sustainable according to the Target Method.

Therefore:

We need to be proactive in developing sound policies to more toward sustainability so the industry can survive future periods of resource depletion.

We also need to proactively shift public perception of our industry through publicizing our efforts at becoming even cleaner (although we are "clean" already!)

Problems and Opportunities

Need for:
Proactive approach
Anticipating problems
Solving problems
Avoiding problems
Pre-competitive cooperation

Elements of ESH

What are the elements of ESH conscious design?

Optimize for global optimum for environment, health, safety, and economics

- Design plant for future decommissioning
- Design products for ease in recycling

Design processes for robustness and ease in changing to more environmentally benign formulations

LCA: Details and How to Carry It Out

LCA is an analytic tool for quantifying the environmental impacts of all processes used in converting raw materials into a final product. It consists of three parts, life cycle inventory, impact assessment, and life cycle improvement.

Life cycle studies have been used to understand three types of problems:

- ✓ Assessments of single products to learn about their ecoprofiles.
- ✓ Comparisons of process routes in the production of substitutable products of processes.
- Comparisons of alternative ways for delivering a given service or function.

Pros and Cons

An LCA study is not very objective because.
 ✓ LCA is based on a number of assumptions and choices
 ✓ LCA methods are still being developed and refined
 ✓ There will always be uncertainties related to data and methods

However LCA is a good tool because

- ✓ No other analytical tools are available yet
- ✓ An assessment will always be subjective

Strength and Weakness

Good side

- The whole life cycle (avoid sub-optimisation)!!
- Conversion to potential environmental impacts!!
- Compare different I/O on the same scale!!
- Cleaner products
- Informed choices
- ✓ Prioritise
- Strategy can be integrated in DfE and EMS

Strength and Weakness

Problems with LCA Cost, time, effort
Here and now
Time consuming
Data are difficult to collect
Difficult to interpret and evaluate
Not very transparent
Does not pay back here and now

Example of Screening LCA: scCO₂

Using carbon dioxide at high temperature and pressures, known as supercritical carbon dioxide $(scCO_2)$, in place of hazardous materials, replaces the solvents as well as the tremendous quantities of ultrapure water that are used to wash those solvents away

Some research that has been underway:

- ✓ GTi manufactures a patented scCO₂ drying system
- ✓ The Los Alamos SuperScrub™
- Thrust B seed project in ERC center: Densified fluid cleaning of semiconductor wafer surfaces

scCO₂ Properties

Common Usage of scCO₂

Extraction of fragrances

Decaffeinating of coffee, tea

Supercritical CO₂

Dry cleaning application

Remove bitterness from beer

Scope of Boundaries Included

- Produce CO₂ (if applicable)
- ✓ Collecting CO₂
- Processing CO₂ (purify, pressurize, preheat, heat)
- ✓ Using scCO₂ on wafer cleaning
- ✓ Collect CO₂ after use
- ✓ Use reuse
- Disposal recycling

Extraction of materials

Processing of materials

Production and use

Disposal/end of life

Transportation has been excluded from the boundaries

scCO₂ -Los Alamos SuperScrub[™] process.

Expected Results of Economic Aspects

The initial capital costs for $scCO_2$ systems are usually higher than other alternatives by a significant amount.

- High-pressure cleaning chamber and the valves and instrumentation required for the system.
- No vendors that mass produce scco₂ systems yet.

Cost Components Need to Be Considered

- ✓ Equipment
- ✓ Consumables
- ✓ Maintenance
- ✓ Labor
- ✓ Support personnel
- ✓ Administrative costs

- Depreciation, moving equipment, rearranging equipment footprint, training
- Utilities, chemicals, supplies, waste management
- Maintenance labor, parts, vendor contracts, vendor training, computer system
- Operators
- Higher support personnel, engineering, supervision, contractor labor
- ✓ Insurance, taxes, interests

Expected Results of Environmental Aspect

- DI water uses up many resources
 scCO₂ has to use a lot of energy to operate
- Because of the high operating pressures of scCO₂, we may lower yield or productivity by damaging wafer structures
- High pressure could induce hazardous problems

The quantifying of each category and underlying categories need future work

Impacts and Results Discussion

Process and equipment developments are making scCO₂ more competitive

- Reducing the requirements for continuous carbon dioxide flow
- Producing effective cleaning at lower temperatures and pressures
- ✓ The construction of equipment with less expensive materials.
- scCO₂ could be the most environmentally benign based on LCA results even with its high energy costs

A More Complex Process: NF₃ in Cleaning

Use life cycle assessment as a tool for selecting among manufacturing strategies and for selecting within a strategy for improved ESH impact – In chamber cleaning, is use of NF₃ or C_2F_6 "globally" better (cradle to grave)

Using LCA can reveal better trade-off decision opportunities

- ✓ All units are involved in the 'whole picture' and been investigated, so we can improve 'sub-optimisation'
- LCA will look globally at ESH impacts like ozone depletion, resource depletion, toxicity, etc
- Externalities like transportation, upstream manufacturing activities, and downstream usage all become important

Forms of Fluorine

Fluorine containing species that enter and leave semiconductor Manufacturing processes are normally gases

an extremely hazardous acid HF NF_3 a toxic gas multiple hazards, ozone depletion PFCs, HFCs, CFCs a salt NH_4F BF_3 a toxic gas CF_4 a colorless, odorless, nonflammable, gas SiF_4 a colorless, corrosive, gas SF_6 a colorless, nontoxic, nonflammable, gas WF_6 a toxic, corrosive, nonflammable liquid ArF a toxic gas KrF a toxic gas F_2 a toxic gas

Trade-offs Between CFC and NF₃

Issues	NF ₃	C ₂ F ₆
Cost	Expensive	Less expensive
Impact	Immediate toxicity concerns Long term impact unknown	Green house gas with long impact on environment Strong structure, long life time results in accumulation in atmosphere
Usage	Faster cleaning than C ₂ F ₆ so may reduce some impacts. Produces more F, causing problems in ductwork?	Produces CFCs
Treatment	Use burner box followed by scrubbing. Scrubbers were optimized for CFC control! Problem?!?	Use plasma to break CFCs to harmless and manageable species, then to scrubber. Will produce much CO ₂ during treatment.
Manufacturing	Ammonia + fluorine, cupper	Uses non-renewable hydrocarbons, metal-fluorine compounds Complex chemistry with many steps

Data Needed for Complete Evaluation

- ✓ Production methods of NF₃, CFCs
- Possible mechanism that is happening during the production and usage
- ✓ Input, output inventories data, emission
- ✓ Abatement strategy of NF₃, CFCs
- ✓ Energy usage of producing NF₃, CFCs
- ✓ ESH information of NF₃, CFCs

Difficulties Doing NF₃ Analysis

1. How can proprietary information be used? Information is difficult to share – competitive advantages!

Is it possible to create a "black box" approach to aggregate data (UT Austin cluster tool approach).
 Possibly use slightly outdated "data" from recently discarded processes to provide snap shots of environmental impacts from similar manufacturing steps?

Can the industry create a standard database format for sharing information that is:

- ✓ Non-proprietary.
- ✓ Still useful?

Difficulties Doing NF₃ Analysis

2. Can we estimate data for LCA to avoid proprietary information sharing?

- ✓ Use patents to build representative LCA data? (Too many uncertainties).
- ✓ Use a semiconductor industry standard a "standard wafer" like information furnished by Philips.

Could be used as baseline data for external (academic) use.

Conclusions

- Life cycle assessment is becoming a useful tool for the semiconductor industry
- The methodology needs more work to become fast and robust
- We have to generate a uniform database to facilitate LCA, shortening the time span to meet industry needs

Acknowledgements

NSF/SRC to provide funding for this project
 Professor Paul Blowers
 Professor Farhang Shadman
 International Sematech
 Motorola for future collaboration
 Jeremy Zarowitz for EPA TRI data