

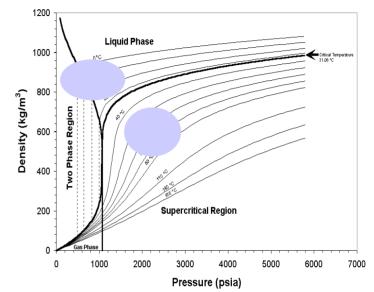
Microelectronic Device Manufacturing with CO₂

MICELL INTEGRATED SYSTEMS

April 2003 James B. McClain Jmcclain@micell.com Tel: 919-313-2111

Agenda

- Industry Challenges
- MIS Background
- The Broad Process Opportunities
- Execution



Challenges Industry Faces

- Device Yield vs. Device Performance
 - Shrinking device features (practical limits of water-based processes)
 - Smaller devices require new materials (incompatibility)
- Escalating Operating Costs
 - Excessive materials/chemistry usage
 - EH&S challenging abatement/recycle

Why CO₂-based Processing?

- Low viscosity and surface energy
 - Wets any surface
 - Will not damage structures
 - Reduced boundary layer
- High density
 - Improves solvent properties
- Active micelle chemistry
 - Surfactants for carrying reactive and active chemicals in to the wafer structure
- Dry process platform
 - Cluster tools
 - High throughput

Micell Integrated Systems -Intellectual Property

- Patents
 - Access to 64 patents issued in US
 - 3 additional filings recently allowed
 - Licensed patent rights account for 27 of the 64 issued
 - 34 additional patent applications pending with USPTO
- Internal Expertise
 - 7 Ph.D. Research Scientists
 - 2 Senior Process Engineers
 - 2 Research Scientists, 1 Process Engineer
- Long-term Relationships
 - Prof. Joseph DeSimone (Chairman) and Prof. Ruben Carbonell (Advisor)
 - Kenan Center for the Utilization of CO₂ in Manufacturing (NCSU & UNC-CH)

MICEL

SYSTEMS

cutting edge scientists, engineers, and national labs

Required Technology Components

Chemistry Formulations

- Ubiquitous capabilities micro -domains, active chemistries...
- Application specific formulations based on generic and optimized with process and hardware
- Process
 - Ubiquitous methods rapid mix, rapid fill/vent, physical action...
 - Process of record specific chemistry formulations and process recipe optimized for chamber configuration

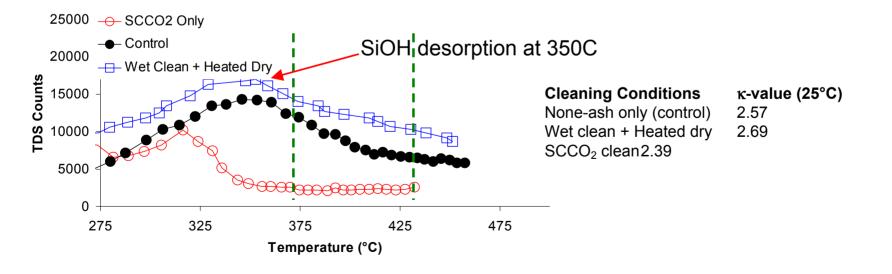
Hardware

- infrastructure
- process specific chamber configurations
- tool platform

Cleaning - Why CO₂

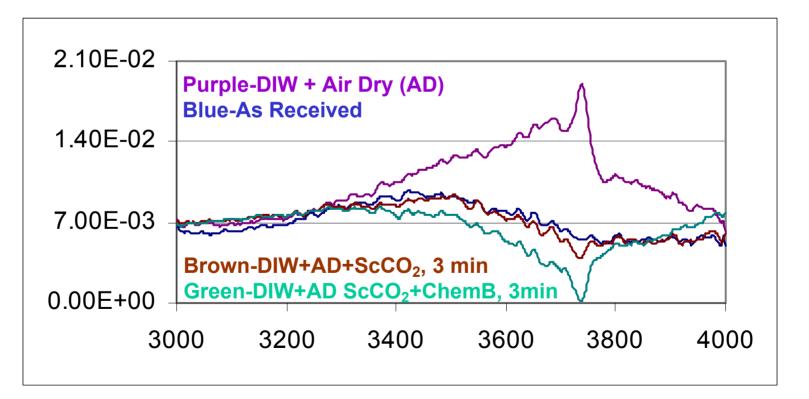
- Performance/Yield
 - New Materials such as porous low-k dielectrics
 - Removal of bulk water/chemistry from porous structure
 - Presence of chem-sorbed and physi-sorbed water impacts dielectric value
 - Increase in k due to Si-OH formation (post etch/ash + H_2O)
 - Feature size / aspect ratios
 - ScCO₂ -zero surface tension, ultra-low viscosity, lead to
 - Excellent wetting
 - Other structurally challenging features (air-bridges, cantilevers, MEM's, Masks)
 - Avoid collapse, stiction
- Environmental, Health, and Safety
 - Reduced solvents, water, byproducts, recyclable

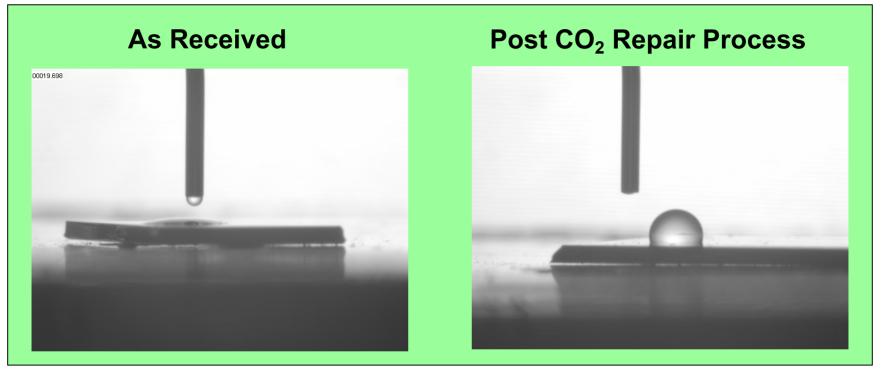
scCO₂ Cleaning Applications


- Drying (cleaning water)
- Post-etch/ash residue
- Copper Post barrier breakthrough
- Specialty apps
- Masks
- Generic process capabilities

Porous Low k Materials Effects of Etch/Ash plus Wet on k Value

- Etch/Ash process followed by wet clean raises dielectric value due to film damage (creation of SiOH groups)
- SiOH groups lead to higher k values
- CO₂ cleaning process avoids creation of SiOH groups

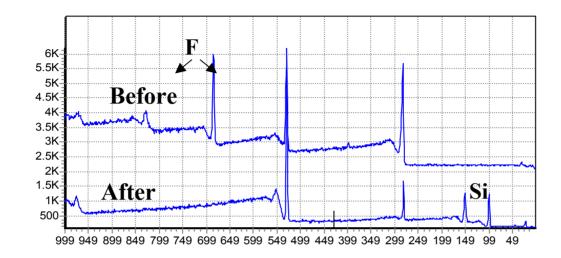

Thermal Desorption Spectroscopy


Drying of Etch/Ash Exposed Porous MSQ with scCO₂ Formulations

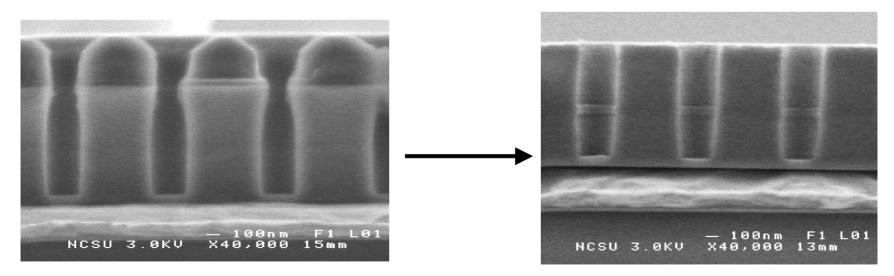
- Etch exposure/damage of MSQ rendered the film hydrophilic
- CO₂ rapidly removes adsorbed water from the film
- CO₂ formulation rapidly dries MSQ film and reduces the SiOH content with additive chemistry

MICELL INTEGRATED SYSTEMS

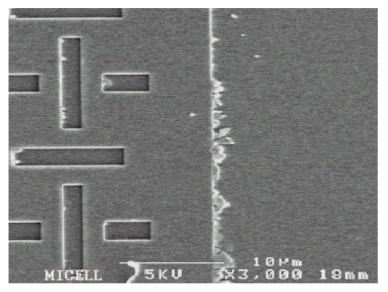
Repair of Plasma Damaged Porous MSQ (Formulated scCO₂)

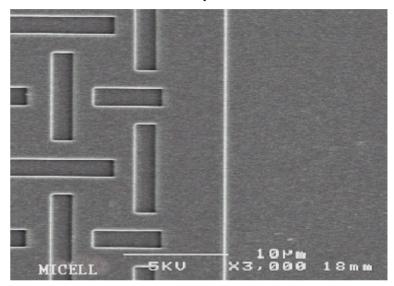

- Etch/Ash exposed porous MSQ
- Increased surface silanol content
- Contact angle of 13°

11


- Supercritical CO₂ based formulation repair of etch damaged film
- Contact angle of 106°

Post Dielectric Etch Cleaning with scCO₂ Photoresist Strip and etch residue removal


XPS data on a post-etch pre barrier breakthrough sample before and after CO_2 based cleaning.

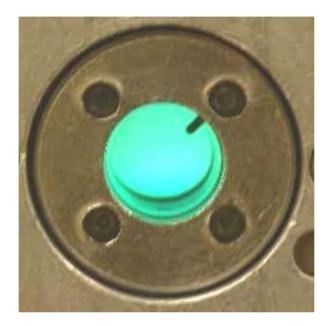


Post MSQ Etch (post-ash) scCO₂ Cleans Lab-scale Results

MSQ wafer - as received

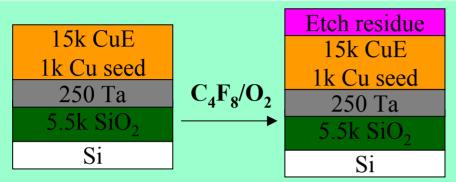
MSQ wafer - processed

- Active chemistry developed for MSQ etch/ash residue cleaning
- Incorporates 'CO₂-philic' active ionic component
- Excess etch residue produced from MSQ low k etch at pre-metal 1 process stage; visible at left
- CO₂-philic active removes etch/ash residues from MSQ structures with no measurable CD loss; visible at right.



Specialty Cleaning Formulations for Copper Ion Removal for Semiconductor Substrates

- Dense CO₂ is the ultimate non-polar solvent. No net dipole. Solubility characteristics toward ionic materials similar to hexane.
- Oxidized metal species (ca. CuF₂, CuO, CuCl₂, CuF, Cu₂O, Cu(OF)₂) only removed by charge dissociation CuF₂ ----- Cu²⁺ + 2F⁻
- Ion dissociation (dissolution of ionic species) facilitated in polar, protic media such as water.
- Co-solvents added to CO_2 in small quantities, <15% are ineffective in changing non-polar nature of dense CO_2
- Additives are needed that in small quantities can enhance the ionic potential of the fluid medium. Water-in-CO₂ microemulsions!


Copper lons in water-in-CO₂ Microemulsion

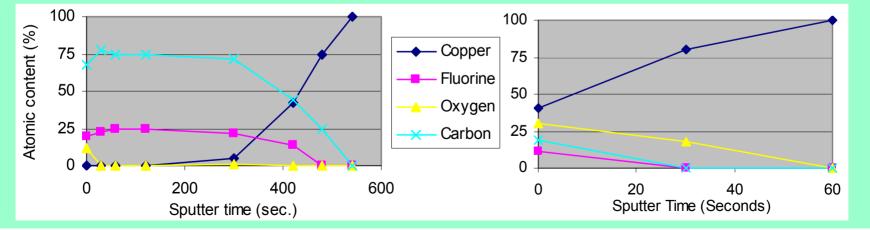
- Approximately 2 mg/mL of Copper in CO₂
- 170 bar at 40°C
- 2% surfactant concentration, 17:1 mole ratio of water to surfactant
- · Ionic surfactant with non-alkali counter ion

Copper Challenge Wafer Cleaning

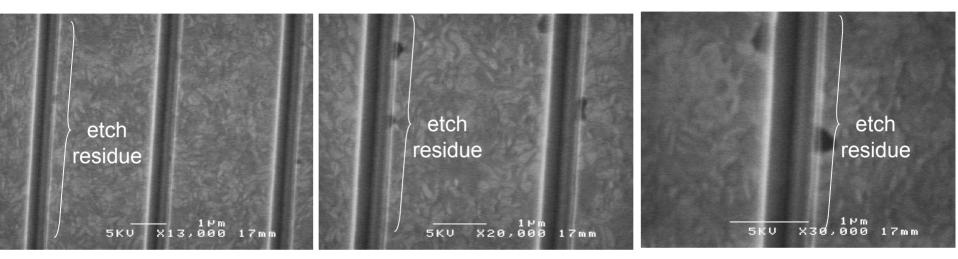
Sematech Challenge Wafer

•Clean copper surface exposed to etch stop break through gas

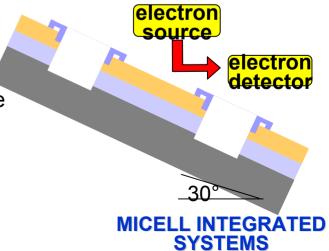
Sample	Cu	F	0	С
As Received	0	22	13	65
EKC 525 Cu	16	9	23	52
CO ₂ : Form. 25	41	11	30	19
CO ₂ : Form. 27	34	4	14	37


MICELL INTEGRATED SYSTEMS

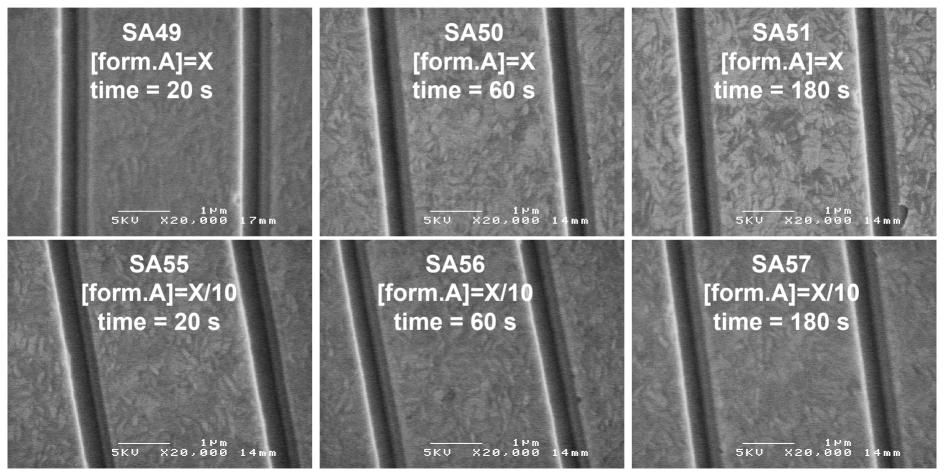
XPS Analysis


•Surface content of an as received wafer

•Comparison of commercial wet cleaned and scCO₂ cleaned samples


XPS Sputter Analysis: Surface content versus time for the as received sample and a CO₂ cleaned sample

Specialty Cleaning Applications CO₂ Enabling Technologies



- Post metal etch (Aluminum)
- Etch residue on right side of trench is visible by SEM as a thin, white, translucent strip along trench edge
- Etch residue is not visible along left side of trench edge due to viewing angle

Post-etch Residue Removal using formulated scCO₂

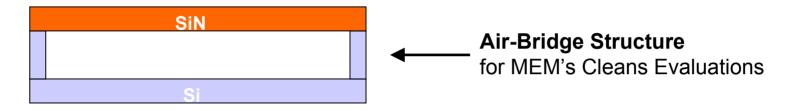
Surfactant-based active chemistry for etch residue removal

MICELL INTEGRATED SYSTEMS

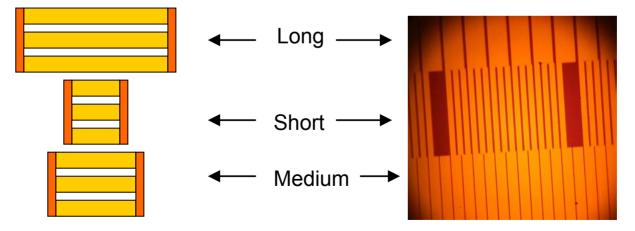
18

Specific Needs for EUVL Mask Cleaning

- More Frequent Cleaning Expected (No Pellicle)
- Present Cleaning Technology Not Adequate
 - New Mask Materials
 - No Change To Mask Topography. No Surface Roughening, Etching Or Swelling Permitted
- Water And Organic Contamination Is Detrimental Even At Mono Layer Level
- Stringent Particle Specifications
- Fluorine EUV Resists Are Highly Soluble In scCO₂ Ease Of Cleaning

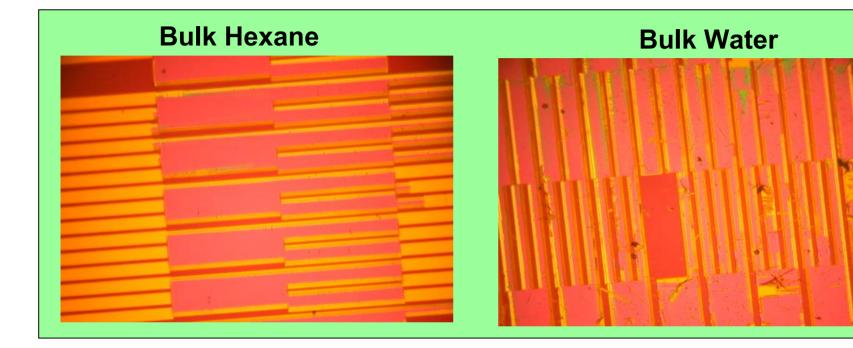

Mask Cleaning and Rework

- Chemical 'Aggressiveness" can be Adjusted as Needed
- CO₂ Fluid Properties Enhance Particle Removal with Superior Processing Technology
 - Ideal wetting properties (low viscosity, negligible/no surface tension, liquid/scCO₂) contribute to thinner boundary layer versus water
 - 'Water-like' density provides comparable momentum transfer
 - Fluid compressibility, phase modulation, enhances particle removal from within features
 - Megasonic energy useful in reducing boundary layer, smaller particle removal
 - Proprietary processing steps enhance particle control and prevent particle redeposition.



scCO₂ Processing Advantages: Proprietary Fluid Handling Processes

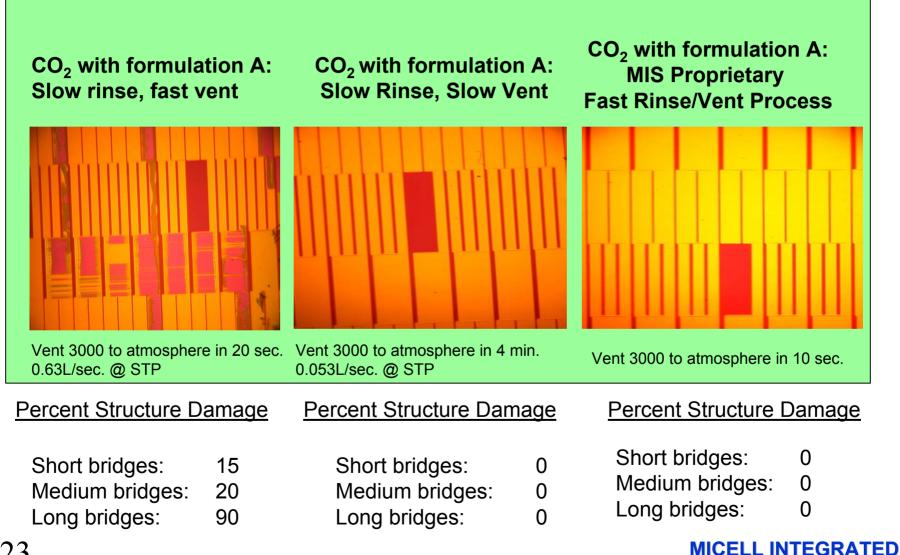
scCO₂ Technology for Geometrically Challenging Structures



Top Down View: 3 different lengths (Optical Scope, 100 x)

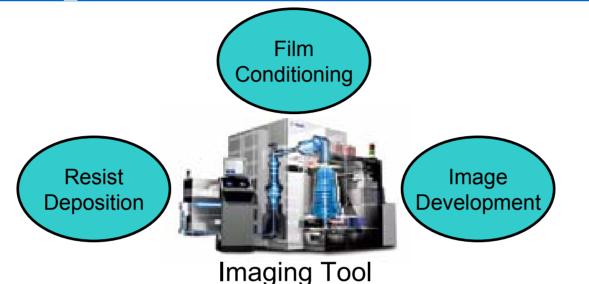
Air Bridge Structure Samples: Bulk Solvent Soak Experiments

Percent Structure Damage


Short bridges:25Medium bridges:100Long bridges:100

Percent Structure Damage

Short bridges:100Medium bridges:100Long bridges:100


MICELL INTEGRATED SYSTEMS

Air Bridge Structure Samples: Delivery and Rinsing of Formulation A in CO₂

SYSTEMS

Pattern Transfer Applications for CO₂-based Process Technology

Dense CO₂ enables each capability without the typical sacrifice or tradeoff in benefits

Capability

'Dry' film deposition "no outgassing" Control of physical uniformity Control of film composition and homogeneity 'Dry' low temperature film treatment/ densification CD control and etch resistance CO₂-philic resist Zero surface tension drying

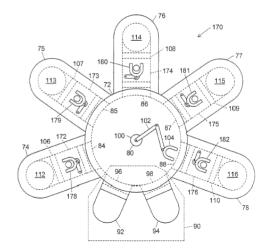
Benefit

- CD control and defects
- CD control and defects
- CD control and defects
- Transparency and etch resistance High aspect ratio patterns

MICELL INTEGRATED

SYSTEMS

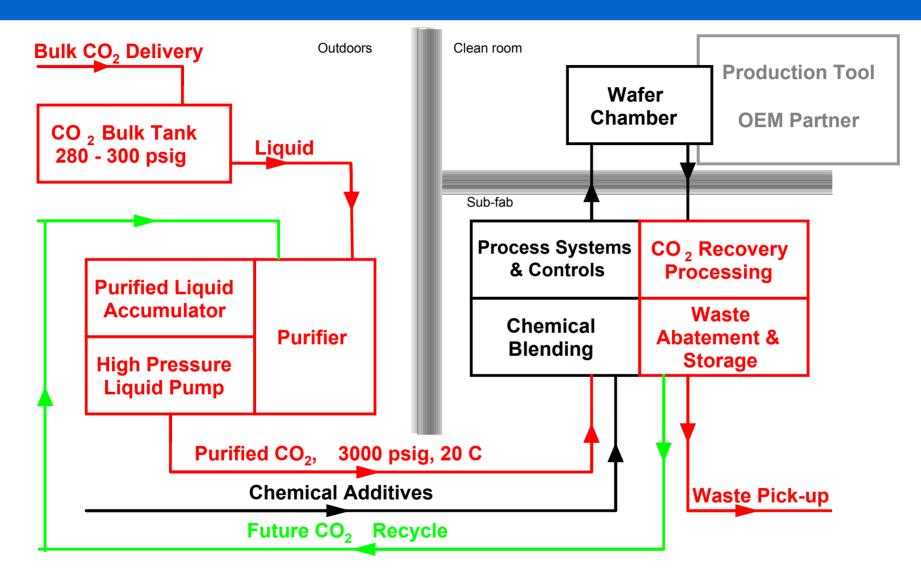
NSF Science & Technology Center


Integrated CO₂-based Processes

- "Totally dry" process technology
 - Wide range of compositions and CO₂ densities combine for unparalleled processing window
 - Formulated CO₂ solution provides performance-led process solution
- Pattern transfer applications coupled directly to etching and stripping/cleaning processes
 - Enables complete processing of structures without exposure to aqueous solutions.

Other Applications for the Technology Platform

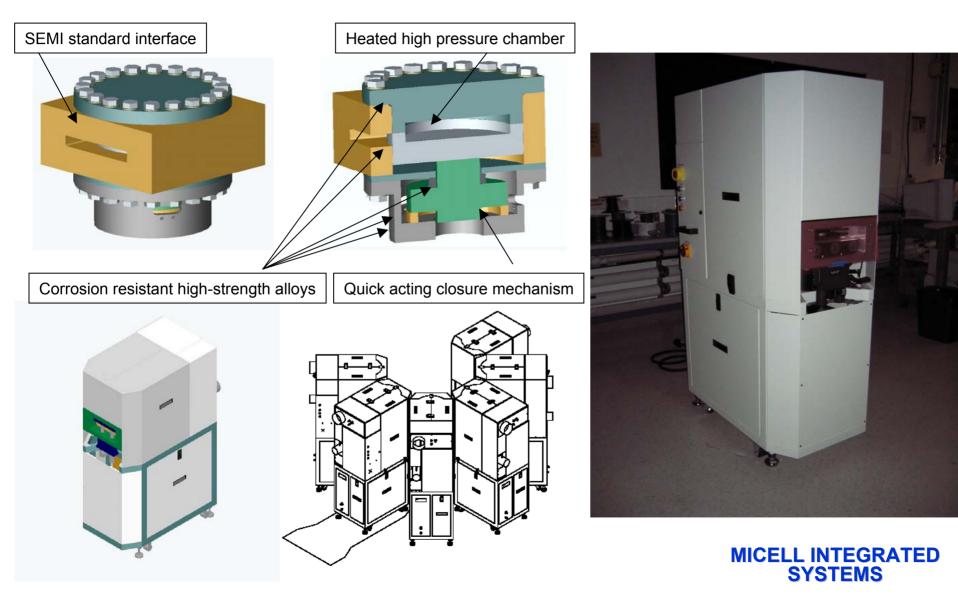
- Ultra Low-k Dielectric Material Processing
 - applicable IP
- MEMS Manufacturing
 - applicable IP
- Read-Write Heads
 - applicable IP
- CMP
 - applicable IP



Execution

- Strategic, Developmental and Commercial Alliances
 - Chemistry Formulations (Specialty Chemistry Providers)
 - generic capabilities micro -domains, active chemistries...
 - application specific formulations based on generic and optimized with process and hardware
 - Process (End Users and OEMs)
 - generic rapid mix, rapid fill/vent, physical action...
 - Process of record specific chemistry formulations and process
 recipe optimized for chamber configuration
 - Hardware (BOCE, OEMs, other industry suppliers
 - infrastructure
 - process specific chamber configurations

scCO₂ Process System, Supply & Support


MICELL INTEGRATED SYSTEMS

Infrastructure BOC - scCO₂ Supply Solutions

- Integrated approach to supply supercritical CO₂ (scCO₂)
- CO₂ from BOC's extensive supply network
 - Designated quality control processes
 - Flexible and consistent supply
- Unique purification and pressurization equipment
 - Further tightens scCO₂ control
 - Reduces variability
- Unique scCO₂ chemistry provides active ingredients
- Accurate control of the inputs and reliable handling of the outputs to your process

Micell / BOC Edwards Technology

Summary - Current Projects

- Cleaning (Direct Funding)
 - Development on-going
 - Commercial approach evolving
- Metal Deposition (Direct Funding)
 - C&F (12/02 05/03)
 - Shift to development Summer 03
- Mask Cleaning opportunity evaluation
- Lithography consortium approach planning
- Ultra Low-k early stage evaluation
- MEMS early stage evaluation

<u>112</u>

Questions and Discussion

• Contact Information:

Jim McClain, President and CTO of Micell Technologies and MIS 7516 Precision Drive, Raleigh NC 27613 919-313-2111 jmcclain@micell.com

More Information

www.micell.com www.micellintegratedsystems.com

