MOLECULAR CONTAMINATION OF HIGH-k GATE DIELECTRIC SURFACES

Prashant Raghu^{*}, Chris Yim, and Farhang Shadman Department of Chemical and Environmental Engineering University of Arizona, Tucson

* E-mail: <u>prashant@email.arizona.edu</u>

1

Presentation Outline

- Sources and effects of molecular contamination
- Research objectives
- Experimental approach
- Results and discussion
 - Adsorption loadings and kinetics on high-k materials
 - Modeling and simulation of adsorption
 - Impact of atmospheric molecular contamination (AMC) on ultrathin film thickness measurement
- Conclusions

Sources and Effects of Molecular Contamination

EFFECTS

• Gate oxide deterioration

Moisture (H_2O)

- Etch rate shifts due to incomplete wetting
- Wafer and optics hazing
- Counter-doping
- Delamination, non-uniform Cu-seed deposition
- Malfunction of epitaxial growth
- Photolithography

Organics from Chemicals and Personnel Paints and Filters Wafer Boxes and Equipment

✓ Isopropanol (IPA)

- ✓ Butylated Hydroxy toluene (BHT)
- ✓ Dioctylpthalate (DOP)

✓ Amines

Department of Chemical and Environmental Engineering, University of Arizona

Key Issues

2002 ITRS Roadmap

Year	2001	2004	2008	2011
Technology	130 nm	90 nm	60 nm	40 nm
Organics C atoms / cm ²	2.6 x 10 ¹³	1.5 x 10 ¹³	0.7 x 10 ¹³	0.7 x 10 ¹³

- SiO₂ gate dielectric thickness in current MOS devices less than 20 Å
- Direct tunneling causes high leakage currents
- Ultrathin oxides highly sensitive to contamination

Limitations of SiO₂ as the Gate Dielectric

- Scaling of device dimensions calls for SiO₂ thinner than 12 Å for future MOS applications
- Key manufacturing related issues are:
 - » Thickness variation: within-wafer, wafer-to-wafer, run-to-run
 - » Penetration of impurities from gate into the dielectric
 - » Lifetime of devices
- Exponential increase in tunneling current with decreasing thickness is the fundamental limit to the scaling of SiO_2 -based gate dielectrics

C

High-k Materials

Replace SiO₂ with a high-k material

Material	Dielectric constant	Bandgap (eV)
SiO ₂	3.9	8.9
Si ₃ N ₄	7	5.1
Al_2O_3	9	8.7
Ta ₂ O ₅	26	4.5
TiO ₂	80	3.5
ZrO ₂	22-30	5.7
HfO ₂	22-35	7.8

- Si_3N_4 and Al_2O_3 are not long term solutions
- Ta_2O_5 and TiO_2 are not thermally stable on Si
- Zirconium and hafnium based materials look promising

Contamination Behavior of High-k Materials

- High-k gate dielectrics may be prone to molecular contamination in a manner similar to SiO₂
- Potential issues associated with molecular contamination of high-k materials:
 - surface roughness and adhesion of films during gate stack formation
 - reduction of overall dielectric constant
 - leakage current
- Characterization of adsorption behavior of new high-k films will assist in deciding their potential for successful integration in silicon MOS technology

Research Objectives

- Study molecular contamination of high-k materials like HfO₂ and ZrO₂ and compare them with SiO₂
 - Adsorption loadings
 - Kinetics of adsorption/desorption
 - Mechanism of interactions of moisture and organics with wafer surfaces
- Develop fundamental models based on adsorption mechanism to simulate adsorption loading and surface concentration profiles

Department of Chemical and Environmental Engineering, University of Arizona

Identification of Molecular Contaminants Adsorbed on SiO₂

Procedure

- Storing wafers in N₂-purged boxes reduced contamination but not as much as that achieved by closed boxes
- Amount of molecular contaminants depended on location of wafer in the cassette
- Wafers stored near photolithography and wet benches had highest contamination

Model Contaminants

Ubiquitous impurity	Used as solvent, drying agent	Used as antioxidant
$\mu = 1.8 D$	Mol.Wt : 60.10	Mol.Wt : 220.35
	$B.P: 83^{0}C$	B.P : 265.2 ^o C
	$\mu = 1.7 D$	$\mu = 1.5 D$

SSC

Department of Chemical and Environmental Engineering, University of Arizona

Atmospheric Pressure Ionization Mass Spectrometry (APIMS)

Ionization

Detection

- Ionization by electron impact
- Atmospheric pressure
- High rate of ionization
- High sensitivity (ppt levels)

- Separation in a quadrupole
- Based on m/e ratio
- 3 quadrupoles enable analysis of peaks with overlapping m/e

• Electron multiplication by secondary electron emission

14

Sample Preparation

> Films deposited in a Pulsar[®] 2000 reactor at ASM America, Tempe, AZ

Substrate	Czochralski (Cz) grown double-side polished Si-(100)
Deposition method	ALCVD TM (Trademark of ASM)
Precursors	$HfCl_4 + H_2O$
	$ZrCl_4 + H_2O$
Temperature	300°C
Film thickness	50 Å
Post-deposition treatment	None
Crystallinity	HfO ₂ – amorphous
	ZrO ₂ – tetragonal polycrystalline

SAC

15

Experimental Reactor

- Wafers diced into 1 cm x 2 cm coupons
- Coupons loaded on nickel coated steel springs and densely packed into a Pyrex[®] glass reactor
- Random orientation and reactor geometry results in good gas mixing
- High wafer to glass surface area ratio

Experimental Procedure

Typical impurity concentration profile at the reactor outlet as measured by mass spectrometer Experimental procedure Adsorption at 53°C Desorption at 53°C Bake-out at 100, 200 & 300°C

Department of Chemical and Environmental Engineering, University of Arizona

Moisture Adsorption Loading

	Si–O	Hf-O/Zr-O
Δ Electronegativity	1.7	2.1
-OH site density	4.6 x 10 ¹⁴	1.0 x 10 ¹⁵
(#/cm ²)		

- \bullet HfO_2 and ZrO_2 have higher adsorption loading than SiO_2
- ZrO_2 has higher adsorption capacity than HfO_2 since it is polycrystalline
- Adsorption of moisture on HfO₂ and ZrO₂ is more energetic

Moisture Retention after Isothermal N₂ Purge

- 45-50 % of adsorbed moisture removed from SiO_2 during isothermal N₂ purge
- Only 20-30 % of adsorbed moisture removed from HfO_2 and ZrO_2

RC

Department of Chemical and Environmental Engineering, University of Arizona

Moisture Retention after Thermal Bake

- Reactor baked sequentially to facilitate moisture removal
- Mass balance calculations indicate that 100% of the adsorbed moisture desorbs from SiO₂ & HfO₂ after 300°C bake; whereas
- ZrO₂ surfaces retains some moisture even after 300°C bake; this is detrimental to the gate dielectric quality

 Potential issues associated with moisture contamination of ZrO₂ films: Lowering of dielectric constant during subsequent processing Increase in leakage current

Moisture Desorption Kinetics

- H_2O desorption kinetics on HfO_2 and ZrO_2 slower than on SiO_2
- This highlights the difficulty in removal of H_2O from the new high-k materials
- Higher bake temperatures and longer bake times would be required to desorb H₂O from HfO₂ and ZrO₂
- Moisture contamination of HfO_2 and ZrO_2 is a serious issue

Decomposition of Isopropanol (IPA)

- Count rate of IPA (@ m/e = 45) drop steadily as temperature increases beyond 130°C
- Count rate of propene (@ m/e = 39, 41) increases simultaneously

SIC

Department of Chemical and Environmental Engineering, University of Arizona

IPA Adsorption Loading

- HfO₂ and ZrO₂ have higher IPA adsorption loading than SiO₂
- IPA loading order: $ZrO_2 > HfO_2 > SiO_2$
- Same trend was observed over a wide range of concentrations

- Desorption of IPA is slower on HfO₂ and ZrO₂
- Difference in IPA desorption kinetics between HfO_2 and ZrO_2 is relatively smaller than that between HfO_2 and SiO_2 or ZrO_2 and SiO_2
- Removal of IPA from HfO₂ and ZrO₂ films take longer time
- Behavior of other polar organics like BHT and DOP can be expected to be similar to that of IPA

Effect of Pre-Adsorbed Moisture on IPA Loading

Experimental Procedure

Step 1. Moisture challenge (conc: 56 ppb)

Step 2. IPA challenge (conc: 107 ppb)

- Presence of one contaminant can affect adsorption/desorption characteristics of other
- Moisture hydroxylates oxide surfaces; the hydroxyl groups change the nature of the surface
- Pre-adsorbed moisture enhances IPA adsorption on SiO₂, but reduces IPA adsorption on HfO₂ and ZrO₂
- IPA is more attracted to bare HfO₂ and ZrO₂ surfaces than to hydroxylated surfaces. Presence of H₂O reduces their affinity for IPA

25

High Concentration Moisture Contamination

- Moisture source: Gas bubbler
- Data acquisition: Electron Impact Mass Spectrometer (EIMS)

- Moisture levels in cleanroom air: High ppm to percentage levels
- $\blacktriangleright H_2O \text{ loading order: } ZrO_2 > HfO_2 > SiO_2$
- Loading values indicate that multiple layers formed

26

Effect of Concentration on Moisture Loading

- Adsorption loading first saturates at a particular level and then again increases indefinitely, similar to BET
- Loading values indicate formation of multiple layers
- Difference in loading between HfO₂/ZrO₂ and SiO₂ is higher initially at low surface coverage, but decreases gradually
- As the surface gets covered with multiple layers, the subsequent molecules get screened from the surface

27

Simulation of Adsorption/Desorption Profiles

- Study mechanism of adsorption/desorption
- Develop rate expressions based on the mechanism
- ➤ Validate the model by fitting it to experimental data
- Estimate rate parameters (rate constants and activation energies)
- ➢ Use model to simulate concentration profiles and adsorption loading
- Application: Optimization of process conditions to reduce effect of molecular contamination

Mechanism of Multilayer Adsorption of Moisture

Department of Chemical and Environmental Engineering, University of Arizona

Development of Adsorption Model

Type

Reaction

Chemisorption

$$H_2O + 2X \xleftarrow[kd0]{kd0} 2X - OH$$

Physisorption

$$H_2O + X - OH \xleftarrow{ka1}{kd1} S$$

$$\frac{d\overline{[XOH]}}{dt} = 2 * ka0 * C_g * \overline{[X]}^2 - 2 * kd0 * \overline{[XOH]}$$
$$\frac{d\overline{[S]}}{dt} = ka1 * C_g * (1 - \overline{[X]}) - kd1 * \overline{[S]}$$

 $\left[\overline{X}\right] + \left[\overline{XOH}\right] = 1$

Species balance equations

CSTR (Mixed Reactor) Model

- Q = Volumetric flow rate
- C_g = Gas-phase concentration (moisture or organic)
- $C_{g in} =$ Inlet-gas concentration
- V = Reactor volume
- r = Net rate of adsorption

Department of Chemical and Environmental Engineering, University of Arizona

Department of Chemical and Environmental Engineering, University of Arizona

Rate Paramaters for Adsorption of Moisture

Process	Symbols	Units	SiO ₂	HfO ₂	ZrO ₂	Order
			@ 30 °C	@ 30 °C	@ 30 °C	
Surface chemisorption	K _{a0}	cm ³ /min	5.0 x 10 ⁻¹⁶	7.2 x 10 ⁻¹⁶	6.8 x 10 ⁻¹⁶	$HfO_2, ZrO_2 > SiO_2$
	K _{d0}	1/min	0.04	0.00004	0.00003	$\mathrm{HfO}_{2}, \mathrm{ZrO}_{2} < \mathrm{SiO}_{2}$
Higher layer physisorption	K _{al}	cm ³ /min	1.2 x 10 ⁻¹⁴	5.7 x 10 ⁻¹²	6.1 x 10 ⁻¹²	$\mathrm{HfO}_{2}, \mathrm{ZrO}_{2} > \mathrm{SiO}_{2}$
	K _{d1}	1/min	13.6	13.4	14	HfO_2 , $ZrO_2 \sim SiO_2$

Energetics of Adsorption of Moisture

Process	Symbols	Units	SiO ₂	HfO ₂	ZrO ₂	Order
Surface chemisorption	E_{a0}	kJ/mol	21	13	11	$\mathrm{HfO}_2,\mathrm{ZrO}_2 < \mathrm{SiO}_2$
	E_{d0}	kJ/mol	29	35	40	$HfO_2, ZrO_2 > SiO_2$
Higher layer physisorption	E _{al}	kJ/mol	6	7	7	HfO_2 , $ZrO_2 \sim SiO_2$
	E _{d1}	kJ/mol	11	8	8	HfO_2 , $ZrO_2 \sim SiO_2$

- Activation energy of surface chemisorption on HfO_2 and ZrO_2 is lower than that on SiO_2
- Activation energy of desorption of chemisorbed moisture from HfO_2 and ZrO_2 is higher than that from SiO_2
- ZrO₂ forms the strongest metal-hydroxyl (M-OH) bond
- Energetics of moisture physisorption on higher layers are the same for all 3 oxides since it is not influenced by the nature of the surface

Energetics of Adsorption of IPA

Process	Symbols	Units	SiO ₂	HfO ₂	ZrO ₂	Order
Surface adsorption	E_{a0}	kJ/mol	3	9	17	$HfO_2, ZrO_2 > SiO_2$
	E_{d0}	kJ/mol	11	14	19	$\mathrm{HfO}_{2},\mathrm{ZrO}_{2}>\mathrm{SiO}_{2}$
Higher layer adsorption	E _{al}	kJ/mol	6	7	7	HfO_2 , $ZrO_2 \sim SiO_2$
	E _{d1}	kJ/mol	8	9	11	HfO_2 , $ZrO_2 \sim SiO_2$

- Activation energies of adsorption of IPA on SiO₂, HfO₂ and ZrO₂ follow the same trend as that for H_2O
- Values of activation energy of surface adsorption indicate that IPA only physisorbs on bare oxide surfaces

Practical Applications of Model

- Model describes actual processes and explains experimental results
- ➢ It is a practical tool for
 - estimation of surface contamination and
 - optimization of process conditions to minimize effects of molecular contamination

Gas-phase H_2O concentration = 0.2 % Adsorption temperature = 24 °C

SAC

35

Impact of Molecular Contamination on Optical Thickness Measurement of Gate Oxide Pilot Wafers

Apparent Increase in Thickness Measurement of Gate Oxide Pilot Wafers due to Molecular Contamination

- Inevitable delay time between gate oxidation and pilot thickness measurement
- Adsorption of molecules from the cleanroom air results in the formation of the so-called "environmental film" (EF)
- Results in an apparent increase in optical thickness measurement
- Adsorption of contaminants is not uniform across the wafer
- Thickness measured apparently has higher standard deviation (s)
- The apparent change in thickness varies from waferto-wafer and run-to-run; this results in an incorrect feedback to the process controller

Delta = difference between first and subsequent measurements

Initial environmental film growth rate (as measured optically) = 0.015 Å/min

37

Improvement in Thickness Measurement by Thermal Desorption

- Oxide pilots subjected to thermal desorption in a "Desorber" just prior to thickness measurement
- The post-desorption thickness data truly represents process or tool performance
- Thermal desorption improves uniformity: within-wafer, wafer-to-wafer, run-to-run
- Results in tighter process control

Conclusions

- HfO_2 and ZrO_2 dielectric surfaces adsorb higher amounts of moisture and IPA than SiO_2 . Therefore, HfO_2 and ZrO_2 dielectrics are more prone to molecular contamination than SiO_2 .
- ZrO₂ films retain some moisture even after a 300°C bake-out; this can be detrimental to the gate oxide quality
- ZrO₂ was shown to form the strongest metal-hydroxyl (M-OH) bond and adsorb IPA stronger than SiO₂ and HfO₂
- ZrO₂ should not be the material of choice from the standpoint of molecular contamination
- But the actual extent of gate dielectric deterioration can be determined only after electrical tests are performed
- Molecular contamination deteriorates precision performance of ellipsometers; thermal desorption of contaminants prior to thickness measurement significantly improves gate oxidation process control

39

Future Work

- Can residual moisture be removed from ZrO₂ beyond 350°C?
- Development of models to simulate competitive adsorption / desorption profiles of multiple molecular contaminants

Department of Chemical and Environmental Engineering, University of Arizona

Acknowledgements

University of Arizona

Dr. Farhang Shadman Niraj Rana, Chris Yim and Asad Iqbal Dr. Ara Phillipossian

ASM America Dr. Eric Shero

Texas Instruments

Dr. Rick Wise

Dr. Paul Tiner

ERC/SRC

CMC

Advisor, Professor in Chemical Engineering Graduate Students Professor in Chemical Engineering

Pulsar[®] Program Manager

External Research Manager, Diffusion

Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Center for Microcontamination Control

Department of Chemical and Environmental Engineering, University of Arizona

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.