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Surface Functional Groups Control ALD

ALD process based upon 
chemical reaction between 
the precursors and the film 
surface.  

The reactions depend on the 
specific reactive functional 
groups present at the surface. 

Manipulate these surface groups 
to control the ALD process
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•The scaling of metal-oxide-semiconductor (MOS) devices to sub-nanometer 
feature sizes requires thin gate insulators.
•Leakage current caused by electron tunneling increases exponentially with 
decreasing dielectrics thickness.
•Using high-κ materials allows deposition of thick films with an effective thickness 
equivalent to thin SiO2 films.
•HfO2 and ZrO2 are promising candidates for future gate dielectrics 

The Need for High-κ Dielectric Materials

P.A. Packan, Science, 1999
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Generate 3-D Pattern from 2-D Template    

Area-Selective ALD

E-beam lithography 
(direct writing)

Source: Paul Scherrer Institut

Photolithography 
patterned SiO2/Si

Source: Intel

Microcontact 
printing
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Additive vs. Subtractive Patterning    

Silicon

Silicon

Desired 
Film

Silicon

Silicon

Silicon

SiO2

SiliconSilicon

Pattern and 
deactivate SiO2

Area-Selective 
ALD

Pattern photoresist Etch film

Silicon

Deposit 
desired 
material

Deposit 
SiO2

PR Strip

Etch 
SiO2

Advantages of additive patterning:
• Avoid difficult etch step
• Deposit material only where desired cheaper, no residual contamination

Objective: Patterned film
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Possible Applications of Area-Selective ALD

• Self-aligned gate stack
• Deposit high-κ dielectric and metal gate by 

ALD.
• Avoid high-κ etch
• Avoid possible contamination
• Proposed process sequence is self-aligned 

with respect to gate dielectric and metal.
• Feature size reduction

• Selective deposition over mask
• Precise dimensional control

• Deposition of expensive materials

• Patterning of materials difficult to etch

Lmin

Lmin

Substrate

Substrate

Substrate

Area-selective 
ALD of spacer

Area-selective 
ALD of gate oxide
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Process Flow for Area-Selective ALD
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Requirements for Area Selective ALD

• Fundamental
•Deactivate surfaces to prevent growth

•Activate surfaces where growth is desired

• Process Integration
•Selective deposition or patterning of activating/deactivating agents

•Compatible with front-end processes

• Etching of deactivating agents

•No residual contamination

•No damage to substrate/deposited films

•Activation agents must provide excellent interface

•No contamination, trapped charge, etc.

•Prevent incorporation of deactivating agents into growing film along 
interfaces (esp. sidewalls)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Deactivation of SiO2

Good deactivating agents should have:

• High reactivity with surface Si-OH group

• Selectivity toward Si-OH over Si-H

• Stability at ALD temperature 

• No reaction or competition with ALD 
precursors

• Ease of integration into process
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• Self-assembled monolayers
(SAMs) have been investigated for 
a few decades. 

• We are exploring the use of a 
series of different length silylating
organic molecules as the 
deactivating agents through both 
solution and gas phase delivery.

self-assembled monolayer (SAMs)silylating reactions
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ALD 
Reactor

Pump

silicon wafer covered by 
deactivating agents

ALD precursor 
1

ALD precursor 
2

Take out samples for 
characterization

A

C

B

A. Deactivating agents 
preparation and analysis;

B. ALD growth of  ZrO2 & HfO2 ;

C. Sample characterization 
after deposition. 

Combined Deactivating Agents & ALD

Bare silicon 
wafer

XPS;

Ellipsometry;

TEM

AFM
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Schematic Diagram of ALD System
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Conformality and Surface Roughness of ALD Films

RMS roughness < 0.15nm 
for 3nm ZrO2 & HfO2

HfO2

ALD deposition of metal-oxide films 
- Excellent step coverage (~100%) on 
complicated geometric structures
- Smooth and uniform deposition 
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Interface Analysis by Cross-sectional TEM 
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ODTS Films Analysis before ALD Process

Loosely packed Loosely packed 
ODTS filmODTS film

Smooth and Smooth and 
Uniform Uniform SAMsSAMs

Densely packed Densely packed 
ODTS filmODTS film

Some pinholes Some pinholes 
on on SAMsSAMs
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RMS:  0.20nm
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AFM Analysis of ODTS before & after ALD

pinholes

spikes

Loosely packed ODTS film Loosely packed ODTS film before before ALDALD

Loosely packed ODTS film Loosely packed ODTS film after after ALD ALD 
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Mechanism of ALD growth on loosely-packed ODTS

Loosely packed ODTS

Pinholes in the SAM leave native oxide 
hydroxyl groups accessible to ALD precursors
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Let’s examine other deactivating agents,
such as shorter chain alkylhalosilanes.
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Cross-sectional TEM
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AFM Analysis of Octyltrichlorosilane before & after ALD

Densely packed OTS film before ALD Densely packed OTS film before ALD 

Densely packed OTS film after ALD Densely packed OTS film after ALD 

RMS ~ 1Å

RMS ~ 7Å
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Solution based delivery
Vs. 

Gas phase delivery
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Vapor of 
deactivating 
agents

Bare silicon 
wafer

Film  
characterization

Gas Phase Delivery of Deactivating Agents 

60~120°C, 1atm 

sealed container

θ =110.5o

Hydrophobic

Water Contact AngleWater Contact Angle

EllipsometryEllipsometry monolayer thickness of organosilane 

organosilane film

•Contact Angle 
analysis;

•Ellipsometry;

•AFM;

•XPS.

Both solution phase and gas phase delivery of 
deactivating agents can achieve uniform, high 
quality films, which can be used for direct patterning

AFM AFM analysis shows deactivating agents films formed by 
gas phase delivery are uniform and smooth.

Conclusion:Conclusion:
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Solution based Reaction vs. Gas Delivery Reaction

Gas Delivery Reaction

Gas delivery reaction is much faster than solution based reaction
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Surface Modification for Selective ALD
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Conclusions

• A variety of deactivating agents have been investigated 

• Organosilanes are effective deactivating agents toward HfO2 and ZrO2
ALD

• Longer chain alkylhalosilanes which form more hydrophobic films can 
provide better deactivation toward ALD

• The blocking mechanisms have been investigated as a guidance for
future experiment

• Both solution and gas phase delivery are promising methods for 
achieving high quality, dense SAMs, which can be used as a 
monolayer resist for area selective ALD

• Selectivity of Si-OH over Si-H is satisfactory for achieving area-
selectivity

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Future Work

• Deactivating strategies on Germanium substrate

• Activation strategies

• Patterning and etch methods for deactivating agents

• Extension of area-selective ALD to other chemistries

• Integration of area-selective ALD into CMOS process flow
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