Selective Surface Preparation and Templated Atomic Layer Flim Deposition

Rong Chen¹, Hyoungsub Kim³, Junsic Hong² Paul C. McIntyre³, Stacey F. Bent²

 Department of Chemistry
Department of Chemical Engineering
Department of Materials Science and Engineering Stanford University

2003-12-11 Tele-seminar

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Stanford University Department of Chemical Engineering - http://bentgroup.stanford.edu -

Strategic Plan (Task B-2)

Surface Functional Groups Control ALD

ALD process based upon chemical reaction between the precursors and the film surface.

The reactions depend on the specific reactive functional groups present at the surface.

Manipulate these surface groups to control the ALD process

The Need for High- κ Dielectric Materials

P.A. Packan, Science, 1999

```
Source: Intel Capacitance \propto \frac{\kappa}{\tau}
```

•The scaling of metal-oxide-semiconductor (MOS) devices to sub-nanometer feature sizes requires thin gate insulators.

•Leakage current caused by electron tunneling increases exponentially with decreasing dielectrics thickness.

•Using high- κ materials allows deposition of thick films with an effective thickness equivalent to thin SiO₂ films.

•HfO₂ and ZrO₂ are promising candidates for future gate dielectrics

Generate 3-D Pattern from 2-D Template

Area-Selective ALD

Microcontact printing

E-beam lithography (direct writing)

Source: Paul Scherrer Institut

Photolithography patterned SiO₂/Si

Source: Intel

Additive vs. Subtractive Patterning

Advantages of additive patterning:

- Avoid difficult etch step
- Deposit material only where desired → cheaper, no residual contamination

Possible Applications of Area-Selective ALD

- Self-aligned gate stack
 - Deposit high-κ dielectric and metal gate by ALD.
 - Avoid high- κ etch
 - Avoid possible contamination
 - Proposed process sequence is self-aligned with respect to gate dielectric and metal.

Feature size reduction

- Selective deposition over mask
- Precise dimensional control
- Deposition of expensive materials
- Patterning of materials difficult to etch

Process Flow for Area-Selective ALD

Fundamental

- •Deactivate surfaces to prevent growth
- •Activate surfaces where growth is desired

Process Integration

•Selective deposition or patterning of activating/deactivating agents

Compatible with front-end processes

• Etching of deactivating agents

•No residual contamination

•No damage to substrate/deposited films

•Activation agents must provide excellent interface

•No contamination, trapped charge, etc.

•Prevent incorporation of deactivating agents into growing film along interfaces (esp. sidewalls)

Good deactivating agents should have:

- High reactivity with surface Si-OH group
- Selectivity toward Si-OH over Si-H
- Stability at ALD temperature
- No reaction or competition with ALD precursors
- Ease of integration into process

CI—Śi—CI

OH OH OH

- Self-assembled monolayers (SAMs) have been investigated for a few decades.
- We are exploring the use of a series of different length silylating organic molecules as the deactivating agents through both solution and gas phase delivery.

silylating reactions

self-assembled monolayer (SAMs)

Combined Deactivating Agents & ALD

Schematic Diagram of ALD System

Conformality and Surface Roughness of ALD Films

ALD deposition of metal-oxide films

- Excellent step coverage (~100%) on complicated geometric structures
- Smooth and uniform deposition

ALD Inhibition by Octadecyltrichlorosilane (ODTS) SAM

Silylation Time Dependence for ODTS

Interface Analysis by Cross-sectional TEM

ODTS Films Analysis before ALD Process

Some pinholes on SAMs

Smooth and Uniform SAMs

17

AFM Analysis of ODTS before & after ALD

Mechanism of ALD inhibition on densely-packed ODTS

Densely packed ODTS

The organic SAM blocks the underlying oxide from the ALD precursors

Octadecyltrichlorosilane (ODTS), CH₃ (CH₂) 17 SiCl₃

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

19

Mechanism of ALD growth on loosely-packed ODTS

Loosely packed ODTS

Pinholes in the SAM leave native oxide hydroxyl groups accessible to ALD precursors

ALD precursors react at these surface sites and growth nucleates from those sites

Octadecyltrichlorosilane (ODTS), CH₃ (CH₂) 17 SiCl₃

Let's examine other deactivating agents, such as shorter chain alkylhalosilanes.

Alkyltrichlorosilane Chain Length Dependence

Cross-sectional TEM

AFM Analysis of Octyltrichlorosilane before & after ALD

Densely packed OTS film before ALD

Mechanism of ALD growth on shorter chain SAM

Densely packed MTCS

oxygen atoms provide hydrophilic regions for ALD growth ALD growth nucleates at exposed oxygen atoms, but some precursor attachment may be unstable

Deactivating Agents Studied

1. Chain lengths, reacting groups, and chain monomers

Alkyltrichlorosilane n=0,1,3,5,7,9,11,17

- 2. Number of halide substituents $Si(CH_3)_nCl_{4-n}$ n=1,2,3
- 3. Reactive groups

Solution based delivery Vs. Gas phase delivery

Gas Phase Delivery of Deactivating Agents

Water Contact Angle

organosilane film $\theta = 110.5^{\circ}$ Hydrophobic

Conclusion:

Ellipsometry monolayer thickness of organosilane

AFM analysis shows deactivating agents films formed by gas phase delivery are uniform and smooth.

Both solution phase and gas phase delivery of deactivating agents can achieve uniform, high quality films, which can be used for direct patterning

Gas delivery reaction is much faster than solution based reaction

Surface Passivation as a function of CVD Temperature

Tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (FOTS)

Surface Passivation of different molecules

ALD Results of Gas delivered SAMs

Tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (FOTS)

Silicon wafer coated with FOTS

Can We Achieve the Necessary Selectivity?

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

33

Selectivity for Si-OH vs Si-H under Gas Phase Delivery

Area Selective ALD for ZrO₂

Surface Modification for Selective ALD

Conclusions

- A variety of deactivating agents have been investigated
- Organosilanes are effective deactivating agents toward HfO₂ and ZrO₂ ALD
- Longer chain alkylhalosilanes which form more hydrophobic films can provide better deactivation toward ALD
- The blocking mechanisms have been investigated as a guidance for future experiment
- Both solution and gas phase delivery are promising methods for achieving high quality, dense SAMs, which can be used as a monolayer resist for area selective ALD
- Selectivity of Si-OH over Si-H is satisfactory for achieving areaselectivity

Future Work

- Deactivating strategies on Germanium substrate
- Activation strategies
- Patterning and etch methods for deactivating agents
- Extension of area-selective ALD to other chemistries
- Integration of area-selective ALD into CMOS process flow

Acknowledgments

Prof. Chris Chidsey Prof. Krishna Saraswat Prof. Charles Musgrave

Funding

•NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

•Stanford Center for Integrated Systems (CIS)

•Initiative for Nanoscale Materials and Processes (INMP)

Facilities

Laboratory of Advanced Materials Stanford University

Stanford Nano-Fabrication

Center on Polymer Interfaces and Macromolecular Assemblies ₃₉