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Treatment Technologies

1. Adsorption - activated carbon, zeolites
2. Air stripping
3. Membranes - reverse osmosis
4. Chemical Oxidation - UV/H2O2 or O3
5. Biological treatment - activated sludge; anaerobic
6. Electrochemical reduction
7. Electrochemical oxidation

Disposal issues

Compounds of Interest
• chlorinated solvents - carbon tetrachloride (CT); trichloroethylene (TCE)
• water miscible solvents - methanol
• metal chelating agents - citrate
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Reduction vs. Oxidation
oxidation reduction

CCl4 + 2H 2O → CO2 + 4H + + 4Cl− CCl4 + 4H 2O → CH 4 + 2O2 + 4H + + 4Cl−

E = E o +
RT
nF

ln
ox{ }
red{ }

CCl4{ } = CO2{ } = CH 4{ } ;  Cl−{ } =10−3;  H +{ } =10−7;  O2{ } = 0.21

∆G = −nFEE = 2.09 V E = -0.39 V 
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Three Electrode Cell

V
reference

anode + - cathode

membranee-
e-

target
compound

potentiostat

H2O+ e− → 0.5 H 2 + OH −2H + + 2  e−

Competing reactions
H2O → 0.5 O2 +
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Water Reduction
M + H + + e− → M − H •

Volmer Discharge

M = metal cathode
H• = atomic hydrogen radicals 

• Adsorbed H• available to react with organic species.
• High concentrations of H• result in H2 evolution.

2 M − H • → 2 M + H2 Tafel Recombination

M − H • + H + + e− → M + H2 Electrochemical Desorption
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Reduction - Electron Transfer Mechanisms

Direct Electron Transfer
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Reduction Catalysts
Pd or Pt catalyst

graphite, glassy carbon, titanium, zirconium, etc. support

Cathode

H•
HS-Fe2+Cr3+

• Pd & Pt adsorb high concentrations of highly reactive H•.
• Catalyst may be fouled by deposition of redox active metals or 

sulfur compounds.
• Catalyst adhesion to support material is not perfect and loss of

catalyst occurs over time. 
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Water Oxidation
MOx + H 2O → MOx(OH • )+ H + + e−

MOx(OH • ) → MOx+1 + H + + e− Active Electrodes

• MOx is a metal oxide site on the anode surface.
• Water oxidation produces adsorbed OH• radicals.
• Active oxygen species may oxidize organic compounds.
• High concentrations of active oxygen species lead to O2 evolution.

Non-active Electrodes
PbO2; SnO2

MOx(OH • ) → 0.5 O2 + H + + e− + MOx

Active Electrodes
IrO2; RuO2

MOx+1 → 0.5 O2 + MOx
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Oxidation - Electron Transfer Mechanisms

Direct Oxidation Indirect Oxidation

Anode

e-
hydrogen abstraction
from adsorbed species
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Oxidation Catalysts

Ti, Pt, s.s., TiO1.75, Fe3O4, boron doped diamond (BDD) on Si

Anode

PtSnO2 RuO2
PbO2

non-active active
IrO2

• Titanium substrate is dimensionally stable (DSA®) due to a thin 
protective oxide film.

• Other oxides are resistant to further oxidation. 
• All anodes will wear and lose electrical conductivity and their 

catalyst coatings.
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Effect of Electrode Material on Background 
Currents
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• Wider potential window for BDD due to absence of chemisorbed intermediates. 
• Decreased reactions with solvent result in greater current efficiencies for reaction of 

the target compound. 
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Methods: Rotating Disk Electrode Reactor

N2 purge with TCE or CT

From 
water bath

Return to 
water bath

Hg/Hg2SO4 
reference electrode

Pt counter electrode

Nafion tubing

Iron disk electrodeWater jacket Working electrode

gas purge
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Methods: Flow-through Reactor
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outletinlet
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• Diacell® 102 from CSEM (Centre Suisse d’Electronique et de Microtechnique).



Methods:High Surface Area Flow-through Reactor
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Background - Kinetics
Electron Transfer Kinetics: Butler-Volmer Equation

i = i0[e
−α F (E−Eeq ) / RT − eωF (E−Eeq ) / RT ]

forward reverse

i = current
io= exchange current
α= e- transfer coefficient
ω= e- transfer coefficient
F = Faraday constant
E = potential
Eeq = equilibrium potential
R = gas constant
T = temperature

α = transfer coefficient
α = γ + rβ
γ =#e− before RLS
r =1  RLS involves  e-

r = 0 RLS without e-

β =  symmetry factor 
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Overpotential (η) Provides the Ea
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Reductive Dechlorination

1. Rate-limiting step determination.
2. Reaction mechanism determination.
3. Current efficiencies.
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Rate Limiting Step Determination
1. Determine the effect of temperature on the α for CT and TCE.

For an electron transfer RLS, α should be independent of T.

i = i0[e
−α F (E−Eeq ) / RT − eωF (E−Eeq ) / RT ]

2. Determine the effect of potential (E) on the Ea for CT and TCE.

For an electron transfer RLS, Ea should decrease with decreasing E.

Ea = Ea
eq +αF(E − Eeq )
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Transfer Coefficient Analysis
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• αCT: independent of T → electron transfer RLS.
• αTCE: T dependent → chemical dependent RLS.
• αwater: independent of T → electron transfer RLS.
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Activation Energy Analysis
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• CT: Decrease in Ea → electron transfer RLS. 
• TCE: No decrease in Ea → chemical dependent RLS.  
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Reaction Products
CCl4 → CHCl3 → CH 2Cl2 → CH 3Cl → CH 4

Intermediate chlorinated products consistent with physical 
adsorption (short surface interaction).

C2HCl3 →
RLS

2e −

(C2HCl)→
fast

4 e −

C2H4

Complete dechlorination consistent with a chemical adsorption 
mechanism (long surface interaction).
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Impedance Spectroscopy Analysis

• Each peak indicates a unique 
electron transfer reaction. 

• Peak 1 is for water reduction. 
• Peaks 2 & 3 are for TCE 

reduction.
• Two peaks for TCE reduction 

indicate two electrons transferred 
during rate limited steps. 
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Rs=solution resistance.
CDL=double layer capacitance.
R1=charge transfer resistance associated with reaction 1.
C2= capacitance associated with reaction 2.
R2=resistance associated with reaction 2.
R3=charge transfer resistance associated with reaction 3.
L3=inductance associated with reaction 3.
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H2 Evolution Reactions
•−+ →++ FeHeHFe
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Circuit Modeling for TCE
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• Weak potential dependence for R2 suggests a 
reaction with H•.

• Inductance at low frequencies suggests a slow 
chemical reaction proceeding an electron 
transfer step. 
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Proposed TCE Mechanism
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Current Efficiency
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• current efficiency = fraction of the cell current going towards 
oxidation or reduction of the target compound. 

• decreasing current efficiencies with decreasing voltage leads to
a trade-off between rates of reaction and power costs.  
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Current Efficiency

forward reverse
i = i0[e

−α F (E−Eeq ) / RT − eωF (E−Eeq ) / RT ]
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• decreasing current efficiency with decreasing potential 
due to αwater>αCT or αTCE.
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Oxidation at BDD Electrodes

• BDD electrodes: 1) resistant to oxidation; 2) have small 
exchange currents for H2 and O2 evolution; 3) resistant to 
fouling by chemisorbed compounds; 4) hydrophobic.
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Methanol Oxidation
100 ppm Methanol Oxidation - Boron Doped 

Diamond Film Electrode Flow Through Reactor
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• To remove 100 mg/L methanol at pH = 7, electrical cost per m3

treated = $0.60 for power at $0.10/kWhr.
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Citrate Oxidation
Citrate Oxidation in Stirred Batch Reactor

Citrate Concentration vs. Time
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• Similar TOC and citrate removal indicates mineralization to CO2.
• Current efficiency at 10 mA/cm2 was 180%, suggesting oxidation 

by O2.
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Possible Citrate Oxidation Mechanisms
Overall Oxidation Reaction

C6H 8O7 + 5 H2O → 6 CO2 +18 H + +18 e−

Likely Oxidation Reactions

H2O → OH • + e− + H +

R3CH + OH • → R3C
• + H 2O

C •OOH + O2 → CO2 + HO2
•

• Reactions of carboxyl radicals with atmospheric O2 can 
produce current efficiencies greater than 100%.
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Electrode Fouling
Effect of Anodic Stripping on 

Reactivation of BDD Electrode
Cyclic Voltammetry Scans in 4 mM

Triclosan Solutions with BDD Electrode
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• Oxidation of polymer film by 
hydroxyl radicals reactivates the 
electrode. 

• Decreasing currents indicative of   
fouling by polymerized organic 
compounds.
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Polymer Films Limit Potential Range
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Conclusions

• Electrochemical water treatment can be very cost effective. 

• Cost per mole of electrons = 0.6 cents at 2.2 V ($0.10/kW hr).

• High current efficiencies for oxidation at BDD electrodes. 

• Most difficult issues are in reactor design. 
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