Electrochemical Treatment of Wastewaters Containing Organic Compounds

James Farrell

Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721

Treatment Technologies

- 1. Adsorption activated carbon, zeolites
- 2. Air stripping
- 3. Membranes reverse osmosis
- 4. Chemical Oxidation UV/H_2O_2 or O_3
- 5. Biological treatment activated sludge; anaerobic
- 6. Electrochemical reduction
- 7. Electrochemical oxidation

Compounds of Interest

- chlorinated solvents carbon tetrachloride (CT); trichloroethylene (TCE)
- water miscible solvents methanol
- metal chelating agents citrate

- Disposal issues

Reduction vs. Oxidation

oxidation reduction $CCl_4 + 2H_2O \rightarrow CO_2 + 4H^+ + 4C\Gamma$ $CCl_4 + 4H_2O \rightarrow CH_4 + 2O_2 + 4H^+ + 4Cl^-$

$$E = E^{o} + \frac{RT}{nF} \ln \frac{\{ox\}}{\{red\}}$$

 $\{CCl_4\} = \{CO_2\} = \{CH_4\}; \{Cl^-\} = 10^{-3}; \{H^+\} = 10^{-7}; \{O_2\} = 0.21$

$$\mathbf{E} = 2.09 \, \mathrm{V} \qquad \Delta G = -nFE \qquad \mathbf{E} = -0.39 \, \mathrm{V}$$

Three Electrode Cell

 $H_2O \rightarrow 0.5 \ O_2 + 2H^+ + 2 \ e^- \qquad H_2O + e^- \rightarrow 0.5 \ H_2 + OH^-$ Competing reactions

Water Reduction

 $M + H^+ + e^- \to M - H^\bullet$

Volmer Discharge

M = metal cathode H• = atomic hydrogen radicals

- Adsorbed H• available to react with organic species.
- High concentrations of H[•] result in H₂ evolution.

 $2 M - H^{\bullet} \rightarrow 2 M + H_2$ Tafel Recombination $M - H^{\bullet} + H^{+} + e^{-} \rightarrow M + H_2$ Electrochemical Desorption

Reduction - Electron Transfer Mechanisms

Reduction Catalysts

- Pd & Pt adsorb high concentrations of highly reactive H[•].
- Catalyst may be fouled by deposition of redox active metals or sulfur compounds.
- Catalyst adhesion to support material is not perfect and loss of catalyst occurs over time.

Water Oxidation

 $MO_x + H_2O \rightarrow MO_x(OH^{\bullet}) + H^+ + e^-$

 $MO_x(OH^{\bullet}) \to MO_{x+1} + H^+ + e^-$ Active Electrodes

- MO_x is a metal oxide site on the anode surface.
- Water oxidation produces adsorbed OH• radicals.
- Active oxygen species may oxidize organic compounds.
- High concentrations of active oxygen species lead to O_2 evolution.

 $MO_x(OH^{\bullet}) \rightarrow 0.5 \ O_2 + H^+ + e^- + MO_x$ Non-active Electrodes PbO₂; SnO₂

$$MO_{x+1} \rightarrow 0.5 O_2 + MO_x$$
 Active Electrodes
IrO₂: RuO₂

Oxidation - Electron Transfer Mechanisms

Oxidation Catalysts

- Titanium substrate is dimensionally stable (DSA[®]) due to a thin protective oxide film.
- Other oxides are resistant to further oxidation.
- All anodes will wear and lose electrical conductivity and their catalyst coatings.

Effect of Electrode Material on Background Currents

Cyclic Voltammetry Scans with Platinum and Boron Doped Diamond Film Electrodes in Blank Electrolyte Solutions

- Wider potential window for BDD due to absence of chemisorbed intermediates.
- Decreased reactions with solvent result in greater current efficiencies for reaction of the target compound.

Methods: Rotating Disk Electrode Reactor

• Diacell[®] 102 from CSEM (Centre Suisse d'Electronique et de Microtechnique).

Methods:High Surface Area Flow-through Reactor

Background - Kinetics

Electron Transfer Kinetics: Butler-Volmer Equation

$$i = i_0 [e^{-\alpha F(E - E_{eq})/RT} - e^{\omega F(E - E_{eq})/RT}]$$

forward

reverse

i = current

 i_0 = exchange current

 $\alpha = e^{-}$ transfer coefficient

 $\omega = e^{-}$ transfer coefficient

F = Faraday constant

E = potential

 $E_{eq} = equilibrium potential$

R = gas constant

T = temperature

 α = transfer coefficient $\alpha = \gamma + r\beta$ $\gamma = \#e^{-}$ before RLS r = 1 RLS involves e^{-} r = 0 RLS without e^{-}

 β = symmetry factor

Overpotential (\eta) Provides the E_a

Reaction Coordinate

Reductive Dechlorination

- 1. Rate-limiting step determination.
- 2. Reaction mechanism determination.
- 3. Current efficiencies.

Rate Limiting Step Determination

- 1. Determine the effect of temperature on the α for CT and TCE. For an electron transfer RLS, α should be independent of T. $i = i_0 \left[e^{-\alpha F(E - E_{eq})/RT} - e^{\omega F(E - E_{eq})/RT} \right]$
- 2. Determine the effect of potential (E) on the E_a for CT and TCE.

For an electron transfer RLS, E_a should decrease with decreasing E.

$$E_a = E_a^{eq} + \alpha F(E - E_{eq})$$

Transfer Coefficient Analysis

Electron transfer coefficients were determined from the potential dependence of the reaction rates.

- α_{CT} : independent of T \rightarrow electron transfer RLS.
- α_{TCE} : T dependent \rightarrow chemical dependent RLS.
- α_{water} : independent of T \rightarrow electron transfer RLS.

Activation Energy Analysis

$$E_a = E_a^{eq} + \alpha F(E - E_{eq})$$

- CT: Decrease in $E_a \rightarrow$ electron transfer RLS.
- TCE: No decrease in $E_a \rightarrow$ chemical dependent RLS.

Reaction Products

$$CCl_4 \rightarrow CHCl_3 \rightarrow CH_2Cl_2 \rightarrow CH_3Cl \rightarrow CH_4$$

Intermediate chlorinated products consistent with physical adsorption (short surface interaction).

$$C_2HCl_3 \xrightarrow[RLS]{2e^-} (C_2HCl) \xrightarrow[fast]{4e^-} C_2H_4$$

Complete dechlorination consistent with a chemical adsorption mechanism (long surface interaction).

Impedance Spectroscopy Analysis

- Each peak indicates a unique electron transfer reaction.
- Peak 1 is for water reduction.
- Peaks 2 & 3 are for TCE reduction.
 - Two peaks for TCE reductionindicate two electrons transferredduring rate limited steps.

Bode phase plot for an iron wire immersed in blank electrolyte and TCE solutions.

Equivalent Circuit Modeling

R_s=solution resistance.

C_{DL}=double layer capacitance.

 R_1 =charge transfer resistance associated with reaction 1.

 C_2 = capacitance associated with reaction 2.

 R_2 =resistance associated with reaction 2.

 R_3 =charge transfer resistance associated with reaction 3.

 L_3 =inductance associated with reaction 3.

H₂ Evolution Reactions

$$Fe+H^++e^- \rightarrow FeH^-$$

2
$$FeH^{\bullet} + FeH^{\bullet} \rightarrow 2Fe + H_2$$

3
$$FeH^{\bullet} + H^{+} + e^{-} \rightarrow Fe + H_{2}$$

Circuit Modeling for TCE

- Weak potential dependence for R₂ suggests a reaction with H[•].
- Inductance at low frequencies suggests a slow chemical reaction proceeding an electron transfer step.

Proposed TCE Mechanism

25

Current Efficiency

Current Efficiencies for Reductive Dechlorination of CT and TCE

- current efficiency = fraction of the cell current going towards oxidation or reduction of the target compound.
- decreasing current efficiencies with decreasing voltage leads to a trade-off between rates of reaction and power costs.

• decreasing current efficiency with decreasing potential due to $\alpha_{water} > \alpha_{CT}$ or α_{TCE} .

Oxidation at BDD Electrodes

• BDD electrodes: 1) resistant to oxidation; 2) have small exchange currents for H₂ and O₂ evolution; 3) resistant to fouling by *chemisorbed* compounds; 4) hydrophobic.

Methanol Oxidation

 $6e^- + 6H^+ \rightarrow 3H_2$ cathode

• To remove 100 mg/L methanol at pH = 7, electrical cost per m³ treated = \$0.60 for power at \$0.10/kWhr.

Citrate Oxidation

Citrate Oxidation in Stirred Batch Reactor

- Similar TOC and citrate removal indicates mineralization to CO₂.
- Current efficiency at 10 mA/cm² was 180%, suggesting oxidation by O₂.

Possible Citrate Oxidation Mechanisms Overall Oxidation Reaction $C_6H_8O_7 + 5H_2O \rightarrow 6CO_2 + 18H^+ + 18e^-$

> Likely Oxidation Reactions $H_2 O \rightarrow OH^{\bullet} + e^- + H^+$ $R_3 CH + OH^{\bullet} \rightarrow R_3 C^{\bullet} + H_2 O$ $C^{\bullet} OOH + O_2 \rightarrow CO_2 + HO_2^{\bullet}$

• Reactions of carboxyl radicals with atmospheric O_2 can produce current efficiencies greater than 100%.

Electrode Fouling

- Decreasing currents indicative of fouling by polymerized organic compounds.
- Oxidation of polymer film by hydroxyl radicals reactivates the electrode.

Polymer Films Limit Potential Range

Current for BDD Rotating Disk Electrode in 4 mM Triclosan Solutions

Conclusions

- Electrochemical water treatment can be very cost effective.
- Cost per mole of electrons = 0.6 cents at 2.2 V (0.10/kW hr).
- High current efficiencies for oxidation at BDD electrodes.
- Most difficult issues are in reactor design.

Acknowledgements

Research Assistants

- Jiankang Wang
- Tie Li
- Subbu Tamilmani
- Kunal Malhotra

Funding Agencies

- USEPA R-825223-01-0
- NSF BES-0083070
- NIEHS 5P42ES04940
- NSF/ERC seed project