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Abstract

In-Situ Metrology: the Path to Real-Time Advanced Process Control
Gary W. Rubloff

While real-time and in-situ process sensors have been effectively applied to fault detection, 
process control through course correction has been mainly focused on in-line metrologies to 
drive run-to-run feedback and feedforward control.  We have developed in-situ metrologies 
based on mass spectrometry, acoustic sensing, and FTIR techniques which enable real-time 
thickness metrology and control in CVD processes at a level of about 1% accuracy.  These 
developments open the door to real-time sensors as the basis for both fault management and 
course correction, i.e., for real-time advanced process control.  We have also employed in-situ 
metrology to develop robust control schemes for CVD precursor delivery from solid sources, 
and we are exploring a new spatially programmable reactor design paradigm for which real-
time, in-situ sensing, metrology, and control of across-wafer uniformity is fundamental.  These 
advances hold promise for more efficient manufacturing through advanced process control, 
and with it, improved environmental metrics from that manufacturing.
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Capital Equipment and Advanced 
Process Control

J. Hosch, Texas Instruments
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• Factory cost dominated by huge 
investments in capital equipment

• But … equipment utilization <50%equipment utilization <50%
• Pervasive concepts:

Cost-of-Ownership (COO) 
Overall Equipment Effectiveness (OEE)
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Manufacturing Productivity

C.R. Helms
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Benefits to ESH
• ESH optimization must be consistent and/or synergistic 

with technology performance and manufacturing 
productivity.

• Materials and energy utilization (key ESH metrics) scale 
with number of wafers processed, not with yield.

• High equipment productivity minimizes ESH metrics.

• Advanced process control is the key to high equipment 
productivity.
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Synopsis
• Advanced process control (APC) has become pervasive

– In-situ metrology is key to achieving real-time APC

• In-situ chemical sensors provide viable quantitative real-time 
metrology
– Multiple sensors deliver <1% precision
– Real-time end point control demonstrated
– Course correction as well as fault detection
– Application to CVD, PECVD, etch, spin-cast, …

• New opportunities
– Uniformity control spatially programmable reactor design
– Precursor delivery control solid & low pvapor sources

ready for tech 
transfer & 
evaluation in 
manufacturing 
environment
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Advanced Process Control (APC)

deposition pattern generation etching metrologymetrology

Advanced Process
Control (APC)

Course correction
Compensate for variations
to maintain process targets

Fault management
Identify and repair

equipment problemsSensor-driven
Model-based



7/26/2003 8

Advanced Process Control (APC)

deposition pattern generation etching metrologymetrology

Advanced Process
Control (APC)

Course correction
Compensate for variations
to maintain process targets

Fault management
Identify and repair

equipment problemsSensor-driven
Model-based

Real-time fault detection
Known failure modes and signatures

real-time fault
detection

sensor



7/26/2003 9

Advanced Process Control (APC)

deposition pattern generation etching metrologymetrology

Advanced Process
Control (APC)

Course correction
Compensate for variations
to maintain process targets

Fault management
Identify and repair

equipment problemsSensor-driven
Model-based Fault classification & response

Optimize management of faults

fault classification
& response

Real-time fault detection
Known failure modes and signatures

real-time fault
detection

sensor



7/26/2003 10

Advanced Process Control (APC)

deposition pattern generation etching metrologymetrology

Advanced Process
Control (APC)

Course correction
Compensate for variations
to maintain process targets

Fault management
Identify and repair

equipment problemsSensor-driven
Model-based

run-to-run
feedback control

run-to-run
feedforward

control

Run-to-run control
Feedback & feedforward

Fault classification & response
Optimize management of faults

fault classification
& response

Real-time fault detection
Known failure modes and signatures

real-time fault
detection

sensor



7/26/2003 11

Advanced Process Control (APC)

deposition pattern generation etching metrologymetrology

Advanced Process
Control (APC)

Course correction
Compensate for variations
to maintain process targets

Fault management
Identify and repair

equipment problemsSensor-driven
Model-based

run-to-run
feedback control

run-to-run
feedforward

control

Run-to-run control
Feedback & feedforward

Fault classification & response
Optimize management of faults

fault classification
& response

Real-time control
End point and instantaneous

real-time
control

sensor

Real-time fault detection
Known failure modes and signatures

real-time fault
detection

sensor



7/26/2003 12

APC Hierarchy
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In-Situ Sensors for 
Quantitative Process Metrology

REQUIREMENTS
• In-situ, real-time
• Quantitative precision (~1%)

– Required for course correction

• Process state
• Wafer state
• Preferably multi-use

– Indicators of process & wafer 
state

– Simultaneous application for 
fault detection

• Rich information
– Chemically specific

• Robust, integratable

TECHNIQUES
• Plasma optical emission 

spectroscopy (OES)
• Laser/optical interferometry
• Mass spectrometry
• Acoustic sensing
• Fourier transform infrared 

spectroscopy (FTIR)
• Plasma impedance
• Optical 

thermometry/pyrometry
• Ellipsometry
• Optical scatterometry
• …
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Mass Spectrometry for Real-Time APC

PROCESS CHAMBER
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Real-Time Mass Spec in W CVD

2 WF (g) + 3 SiH (g) 2 W (s) + 3 SiF (g)     + 6 H (g)6 4 4 2
WF6 (g) +     SiH4 (g) W (s) + 2 SiHF3 (g) + 3 H2 (g)

2 WF6 (g) + 3 SiH4 (g) 2 W (s) + 3 SiF4 (g)     + 6 H2 (g)

WF6 (g) +     SiH4 (g) W (s) + 2 SiHF3• W CVD by SiH4
reduction of WF6 in 
0.5 torr thermal CVD

• Monitor process 
state as gas 
concentrations in 
reactor

• Product generation 
and reactant 
depletion reveal 
wafer state changes 
in real time

(g) + 3 H2 (g)
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Real-Time Thickness Metrology

• Reasonable Conversion 
Rate of WF6 reactant (~20%) 

• Metrology established from 
weight vs. integrated mass 
spec signal
– Linear regression 

standard deviation 
1.09%

• Viable for manufacturing 
process control

SiH4 reduction of WF6
0.5 torr, 250°C

SiH4 reduction of WF6
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Real-Time Thickness Control
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• Open-loop wafer-to-wafer thickness variation ~ 10%
• Real-time end-point control to ~ 3%
• Real-time course correction to compensate for BOTH:

– Random short-term variability
– Systematic longer-term drift
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Mass Spec Thickness Metrology

H reduction of WF2 6
WF (g) + 3 H (g) W(s) + 6 HF(g)6 2

Fixed process condition:  10 torr, 500°C, 640 sec
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Run-to-run thickness drift
Average 1.18%
Extreme 3.99%

Mass spec thickness metrology
Average uncertainty 0.56%
Standard deviation 0.72%



7/26/2003 21

Mass Spec Thickness Metrology: 
Intentional Temperature Drift

Intentional Run-to-Run Temperature Drift
Fixed Deposition Time 618 sec

Intentional RunIntentional Run--toto--Run Temperature DriftRun Temperature Drift
Fixed Deposition Time 618 sec• Introduce significant 

temperature drift to 
test robustness of 
metrology

• Substantial change in 
thickness (4X)

– Much larger than 
expected in 
manufacturing
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Mass Spec Thickness Metrology: 
Intentional Temperature Drift

Moderate non-linearity over broad temperature range
Deposition on showerhead, adsorption on chamber walls, …

Metrology precision ~ 0.5% near local process setpoint
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Mass Spec Thickness Metrology: 
Intentional Process Time Drift
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10 torr, 390°C

H2 reduction of WF6
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• Introduce significant process 
time drift to test robustness of 
metrology

• Substantial change in 
thickness (4X)

– Much larger than expected in 
manufacturing

• Linear regression fit
– Average uncertainty 1.19%
– Standard deviation 1.59%

• Quadratic regression fit
– Average uncertainty 0.48%
– Standard deviation 0.57%
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Seed (Nucleation) Layer Growth
Initial nucleation  dominated 

by WF6 - Si reaction in 
presence of H2/WF6 CVD 
reactants

Forms ~30 nm thick W film

Reduced HF production 
during nucleation stage

Possible fault detection 
application (assure 
oxide-free contacts)

Sensitivity for ultrathin
barrier layer CVD 
processes 
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Acoustic Sensing for Real-Time APC

• Acoustic wave propagation and 
resonance

P > 50 torr

• Resonant frequency depends on 
average molecular weight, specific 
heat, and temperature of gas mixture

C = speed of sound
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(0.5 cfm diaphragm pump)
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Pressure ctrl.
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Outlet Receiver
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M
RTγ
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2L
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Acoustic Sensor Thickness Metrology

H reduction of WF2 6
WF (g) + 3 H (g) W(s) + 6 HF(g)6 2

Fixed process condition: 10 torr, 490°C, 640 sec
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FTIR Sensing for Real-Time APC
• Implementation like acoustic sensor

P > 50 torr
• Sense molecular vibrations (infrared) for product generation, reactant 

depletion
• WF6 product depletion thickness metrology precision ~0.5%
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Sensor Integration

real-time control
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Ready for Technology Transfer
• In-situ sensors deliver metrology for real-time APC

– Quantitative precision for real-time course correction
– Dual-use sensors to drive both course correction and fault 

management (e.g., mass spec)
• Research underpinnings in place

– Multiple sensors with metrology at 1% or better
– Real-time end point control demonstrated
– Sensor-tool integration

• Ready for implementation in manufacturing environment  
– Compatible with existing/installed real-time sensors for fault detection
– UMD anxious to assist, collaborate, … 
–– Prediction: further improvement in metrology precisionPrediction: further improvement in metrology precision

• High throughput enhances sensor & tool conditioning
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Across-Wafer Uniformity

• Key manufacturing metric for 
yield

• Limited in-situ sensor capability 
to date

– Full-wafer interferometry – wafer 
state

– Spatially resolved optical (OES) –
process state

• No mechanism for real-time 
uniformity adjustment

• Process optimization involves 
tradeoff between material 
quality metrics and uniformity

Material quality

Uniformity

Recipe 1

Recipe 2

Recipe 3

Choose compromise as 
process design to balance 
uniformity and material 
quality for fixed reactor 
configuration
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Spatially Programmable CVD Uniformity 
through a Smart Showerhead

Sensors - integrated into 
the showerhead

Spatially resolved, multizone
wafer and process state 
measurements

Actuators - multizone, gas 
inlet

Gas flow rates and 
compositions controlled within 
each showerhead segment

Supplementary pumping 
through the showerhead

Reduced inter-segment gas 
mixing, precise composition 
control, gas sampling for 
chemical sensing

Simulation and reduced-
order models

Support for process equipment 
design and control

Multipoint 
Optical
Sensing

(e.g., full-wafer
interferometry)

Heated Susceptor
Wafer

Gas Exhaust to
Process Pumps

Reactor

Multisector
Gas Inlet 

and Showerhead

Illumination
Source

Multipoint Gas
Pumping & Sensing

(e.g., mass spec)

Programmable Uniformity for Enhanced ManufacturingProgrammable Uniformity for Enhanced Manufacturing
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Programmable Nonuniformity
for Rapid Materials & Process Development

One-wafer DOE process optimizationOne-wafer DOE process optimization

Combinatorial CVD new materials discovery and development Combinatorial CVD new materials discovery and development 
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Precursor Delivery Challenges

• Solid & low vapor pressure sources 
increasingly critical for new 
materials

• Precursor delivery control remains 
problematic

– Changing morphology with time 
and usage

– Adsorption on walls
– Complex chemical precursors

• Options limited for both chemical 
precursor and delivery system 
design

Example: Cp2Mg temperature decrease 
40 32°C reduces vapor pressure & 
composition 2X

Simulates “aging” effects
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Real-Time Precursor Delivery Control 

• Acoustic sensor for 
composition metrology

• Source and dilution gas flow 
control

Carrier gas flow set point

MFC

H2 

H2 dilution

H2 carrier 

P

Composition
measurement

Dilution flow set point

Composer 
controller

MFC

Composer
acoustic

transducer
50 g. Cp2Mg
solid source

precursor
delivery

Source temperature varied from 40
32oC 

Σ (H2 flows) = 150 sccm, P = 300 torr
Cp2Mg target = 0.01 mol% 

Cp2Mg composition controlled  
to 1% of target (0.0001 mol %)
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• In-situ metrology is key to achieving real-time APC
– Benefits in rapid feedback at unit process (tool) level
– Implementation within hierarchical control framework

• In-situ chemical sensors provide quantitative real-time metrology
– Multiple sensors with <1% precision
– Real-time end point control demonstrated
– Course correction synergistic with fault detection
– Broad applications - CVD, PECVD, etch, spin-cast, …

• Ready for tech transfer, evaluation in manufacturing environment
• New opportunities

– Uniformity control 
– Precursor delivery control

• Advanced process control promises benefit to both manufacturing 
and environment

Conclusions
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