

In-Situ Metrology: the Path to Real-Time Advanced Process Control *Gary W. Rubloff*

Professor, Materials Science and Engineering, Institute for Systems Research,

and Electrical and Computer Engineering

University of Maryland

www.isr.umd.edu/gwrubloff, rubloff@isr.umd.edu

Department of Materials Science and Engineering

> NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing Teleseminar 7/31/03

Abstract

In-Situ Metrology: the Path to Real-Time Advanced Process Control Gary W. Rubloff

While real-time and in-situ process sensors have been effectively applied to fault detection, process control through course correction has been mainly focused on in-line metrologies to drive run-to-run feedback and feedforward control. We have developed in-situ metrologies based on mass spectrometry, acoustic sensing, and FTIR techniques which enable real-time thickness metrology and control in CVD processes at a level of about 1% accuracy. These developments open the door to real-time sensors as the basis for both fault management and course correction, i.e., for real-time advanced process control. We have also employed in-situ metrology to develop robust control schemes for CVD precursor delivery from solid sources, and we are exploring a new spatially programmable reactor design paradigm for which real-time, in-situ sensing, metrology, and control of across-wafer uniformity is fundamental. These advances hold promise for more efficient manufacturing through advanced process control, and with it, improved environmental metrics from that manufacturing.

Capital Equipment and Advanced Process Control

J. Hosch, Texas Instruments

- Factory cost dominated by huge investments in capital equipment
- But ... equipment utilization <50%
- Pervasive concepts: Cost-of-Ownership (COO) Overall Equipment Effectiveness (OEE)

Manufacturing Productivity

 Integration of Simulation, Modeling, & Factory Control Software

C.R. Helms

Tool Requals

Benefits to ESH

- ESH optimization must be consistent and/or synergistic with technology performance and manufacturing productivity.
- Materials and energy utilization (key ESH metrics) scale with number of wafers processed, not with yield.
- High equipment productivity minimizes ESH metrics.
- Advanced process control is the key to high equipment productivity.

Synopsis

- Advanced process control (APC) has become pervasive
 - In-situ metrology is key to achieving <u>real-time</u> APC
- In-situ chemical sensors provide viable quantitative real-time metrology
 - Multiple sensors deliver <1% precision
 - Real-time end point control demonstrated
 - Course correction as well as fault detection
 - Application to CVD, PECVD, etch, spin-cast, …_

- New opportunities
 - Uniformity control
 → spatially programmable reactor design
 - Precursor delivery control \rightarrow solid & low p_{vapor} sources

APC Hierarchy

APC Hierarchy

APC Hierarchy

In-Situ Sensors for Quantitative Process Metrology

REQUIREMENTS

- In-situ, real-time
- Quantitative precision (~1%)
 - Required for course correction
- Process state
- Wafer state
- Preferably multi-use
 - Indicators of process & wafer state
 - Simultaneous application for fault detection
- Rich information
 - Chemically specific
- Robust, integratable

TECHNIQUES

- Plasma optical emission spectroscopy (OES)
- Laser/optical interferometry
- Mass spectrometry
- Acoustic sensing
- Fourier transform infrared spectroscopy (FTIR)
- Plasma impedance
- Optical thermometry/pyrometry
- Ellipsometry
- Optical scatterometry
- •

Mass Spectrometry for Real-Time APC

Real-Time Mass Spec in W CVD

- W CVD by SiH₄ reduction of WF₆ in 0.5 torr thermal CVD
- Monitor process state as gas concentrations in reactor
- Product generation and reactant depletion reveal wafer state changes in real time

Real-Time Thickness Metrology

- Reasonable Conversion Rate of WF₆ reactant (~20%)
- Metrology established from weight vs. integrated mass spec signal
 - Linear regression → standard deviation 1.09%
- Viable for manufacturing process control

Real-Time Thickness Control

- Open-loop wafer-to-wafer thickness variation ~ 10%
- Real-time end-point control to ~ 3%
- Real-time course correction to compensate for BOTH:
 - Random short-term variability
 - Systematic longer-term drift

Mass Spec Thickness Metrology

Standard deviation 0.72%

Mass Spec Thickness Metrology: Intentional Temperature Drift

Temperature('C)

HF Signal (Amps)

WF6 Signal (Amps)

- Introduce significant temperature drift to test robustness of metrology
- Substantial change in thickness (4X)
 - Much larger than expected in manufacturing

Intentional Run-to-Run Temperature Drift **Fixed Deposition Time 618 sec** 400'C 395'C 400 390 380 370 360 350 340 390'C 385'C 380'C 370'C 360'C 350'C 340'C 6x10⁻⁸ 11 12 4x10⁻⁸ 16 18 2x10⁻⁸ 0 . 4x10⁻¹⁰ -3x10⁻¹⁰ $2x10^{-10}$ 1x10⁻¹⁰ 0 0 5000 10000 15000 20000

Time (sec)

Mass Spec Thickness Metrology: Intentional Temperature Drift

Moderate non-linearity over broad temperature range Deposition on showerhead, adsorption on chamber walls, ...
Metrology precision ~ 0.5% near local process setpoint

Mass Spec Thickness Metrology: Intentional Process Time Drift

- Introduce significant process time drift to test robustness of metrology
- Substantial change in thickness (4X)
 - Much larger than expected in manufacturing
- Linear regression fit
 - Average uncertainty 1.19%
 - Standard deviation 1.59%
- Quadratic regression fit
 - Average uncertainty 0.48%
 - Standard deviation 0.57%

Seed (Nucleation) Layer Growth

Initial nucleation dominated by WF₆ - Si reaction in presence of H₂/WF₆ CVD reactants

Forms ~30 nm thick W film

Reduced HF production during nucleation stage

Possible fault detection application (assure oxide-free contacts)

Sensitivity for ultrathin barrier layer CVD processes

Acoustic Sensing for Real-Time APC

4" wafer

Pressure ctrl.

valve

CVD process

10 torr

 $WF_{6}H_{2}$

to process pumps

Needle valve

Gas compression

Capacitance

gauge

Pressure controller

(0.5 cfm diaphragm pump)

acoustic

sensor

100 torr

• Acoustic wave propagation and resonance

P > 50 torr

 Resonant frequency depends on average molecular weight, specific heat, and temperature of gas mixture C = speed of sound

$$\mathbf{F} = \frac{\mathbf{C}}{2\mathbf{L}} \quad \text{with} \quad \mathbf{C} = \sqrt{\frac{\gamma_{avg} \ \mathbf{RT}}{\mathbf{M}_{avg}}}$$

Acoustic Sensor Thickness Metrology

Run-to-run thickness drift Average 4% over 10 runs

Acoustic sensor thickness metrology

0.5% average uncertainty from linear regression fit

FTIR Sensing for Real-Time APC

- Implementation like acoustic sensor
 P > 50 torr
- Sense molecular vibrations (infrared) for product generation, reactant depletion
- WF₆ product depletion → thickness metrology precision ~0.5%

Sensor Integration

Ready for Technology Transfer

- In-situ sensors deliver metrology for real-time APC
 - Quantitative precision for real-time course correction
 - Dual-use sensors to drive both course correction and fault management (e.g., mass spec)
- Research underpinnings in place
 - Multiple sensors with metrology at 1% or better
 - Real-time end point control demonstrated
 - Sensor-tool integration
- Ready for implementation in manufacturing environment
 - Compatible with existing/installed real-time sensors for fault detection
 - UMD anxious to assist, collaborate, ...
 - Prediction: further improvement in metrology precision
 - High throughput enhances sensor & tool conditioning

Across-Wafer Uniformity

Key manufacturing metric for yield Uniformity Limited in-situ sensor capability to date Full-wafer interferometry – wafer state Spatially resolved optical (OES) – **Recipe 1** process state No mechanism for real-time **Recipe 2** uniformity adjustment **Process optimization involves** tradeoff between material quality metrics and uniformity

Choose compromise as process design to balance uniformity and material quality for fixed reactor configuration

Recipe 3

Spatially Programmable CVD Uniformity through a Smart Showerhead

Programmable Uniformity for Enhanced Manufacturing

Programmable Nonuniformity for Rapid Materials & Process Development

Combinatorial CVD > new materials discovery and development

Precursor Delivery Challenges

- Solid & low vapor pressure sources increasingly critical for new materials
- Precursor delivery control remains problematic
 - Changing morphology with time and usage
 - Adsorption on walls
 - Complex chemical precursors
- Options limited for both chemical precursor and delivery system design

Example: Cp₂Mg temperature decrease 40→32°C reduces vapor pressure & composition 2X

Simulates "aging" effects

Real-Time Precursor Delivery Control

H₂ flow rates (sccm)

Conclusions

- In-situ metrology is key to achieving <u>real-time</u> APC
 - Benefits in rapid feedback at unit process (tool) level
 - Implementation within hierarchical control framework
- In-situ chemical sensors provide quantitative real-time metrology
 - Multiple sensors with <1% precision
 - Real-time end point control demonstrated
 - Course correction synergistic with fault detection
 - Broad applications CVD, PECVD, etch, spin-cast, ...
- Ready for tech transfer, evaluation in manufacturing environment
- New opportunities
 - Uniformity control
 - Precursor delivery control
- Advanced process control promises benefit to both manufacturing and environment

Acknowledgements

- Research group
 - L. Henn-Lecordier, J. N. Kidder, T. Gougousi, Y. Xu, S. Cho, R. A. Adomaitis, J. Choo, Y. Liu, R. Sreenivasan, L. Tedder, G.-Q. Lu, A. Singhal
- NIST
 - J. Whetstone, A. Lee, C. Tilford
- Inficon
 - R. Ellefson, L. Frees, C. Gogol, A. Wajid, J. Kushneir
- Other colleagues
 - Metrology TWG, AEC/APC, AVS MSTG
- Support

