Chemical Vapor Deposition of Organosilicon Composite Films for Porous Low-k Dielectrics

April D. Ross and Karen K. Gleason

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA 02139

> ERC TeleSeminar 12 June 2003

Motivation

Near Term: 2001-2007 YEAR OF PRODUCTION 2001 2002 2003 2004 2005 2006 2007 Interlevel metal insulator 2.6 - 3.12.3-2.7 3.0-3.6 2.6 - 3.12.6-3.1 3.0-3.6 3.0-3.6 -effective dielectric constant (κ) Interlevel metal insulator (minimum expected) <2.7 <2.7 <2.7 <2.4 <2.4 <2.4 <2.1 -bulk dielectric constant (x)

Source: The International Technology Roadmap for Semiconductors: 2001

Manufacturable solutions exist

Manufacturable solutions are known

Manufacturable solutions are NOT known

Motivation

• The widely used ILD material for $0.13\mu m$ and older technologies are PECVD SiO₂ and SiOF

Materials/ Technology	0.13μ m or 0.09μ m	0.07µm	0.05µm	
Organic	SiLκ TM , Flare TM , Paralyne-F(N), αFC, PAE,etc.	Porous SiLκ [™] , Porous Flare [™] , OXD, etc	Partial Air Gap, Complete Air Gap	
Organosilicates	Carbon Doped Oxide, SOG, etc.	Porous CVD CDO, Porous SOD, CDO, etc.	Partial Air Gap, Complete Air Gap	
Range of ĸ	2.8 to 3.0	1.9 to 2.6	1.0 T to 1.5	

Dr. Eb Andideh, Intel Corporation (2003, MIT hosted ERC teleconference)

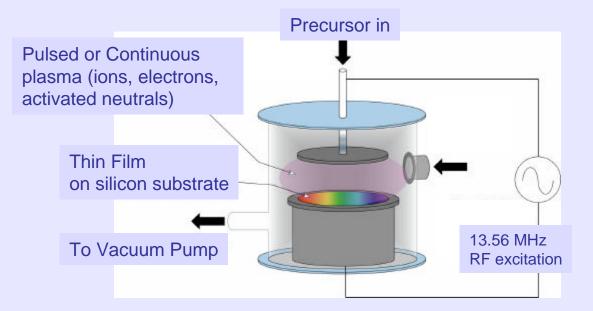
Goals

- Create a Porous,
 Low-κ Film by CVD
 - Rigid Organosilicon Matrix
 - Thermally Labile Porogen
 - Deposition by Pulsed
 Plasma Enhanced
 CVD

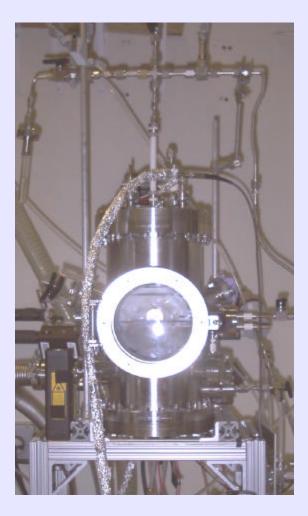
Composition SiO ₂ Si:O:C:H (Organosilicate Glass - OSG)	Fully den 4.0 2.7-3.0	se K Air K =1.0			
<u>% Porosity</u>					
	0	2.7			
	20	2.3			
	50	1.75			
	90	1.15			

Solventless Low k Dielectrics

A. Manufacturing Metrics (Effect on Performance, Yield, and Cost)


Replacing the silicon dioxide (SiO_2) interlevel dielectric layers in microprocessors with films of lower dielectric constant, κ , increases the speed, reduces the power consumption, and decreases the crosstalk between adjacent metal lines. The lowest dielectric constant leads to the fewest levels of interconnect, resulting in an economic and environmental "win-win". Spin-on process for low κ dielectrics such as SIIk (Dow) have the potential for high waste and solvent-related ESH concerns. Plasma CVD process are another possible candidate for the manufacture of low κ dielectrics.

B. ESH Metrics


	Usage Reduction		Emission Reduction				
Goals / Possibilities	Energy	Water	Chemicals	PFCs	VOCs	HAPs	Other Hazardous Wastes
Hot Filament CVD for κ < 2.2	HFCVD uses 5-60% less power than plasma CVD	NA	2.2% utilization for HFCVD >> plasma CVD or spin on	TBD {reduction compared to plasma CVD (fewer chamber cleans may be required)}	Great reduction vs spin-on ~ same as plasma CVD	Some reduction in acid vapors	NA

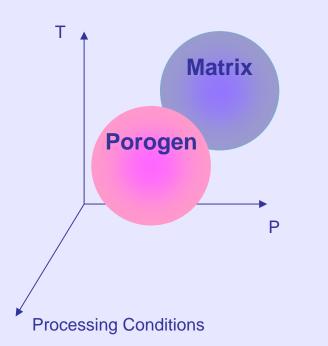
Pulsed Plasma Enhanced CVD

Typical Operating Parameters				
• pressure	300 mTorr			
 peak power 	100-300 W			
 duty cycle 	10-25%			
 substrate temp 	cooling water			
 precursor flow rate 	0 - 20 sccm			

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Composite Materials

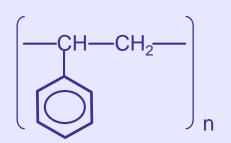
Co-deposition of Porogen and Matrix Materials

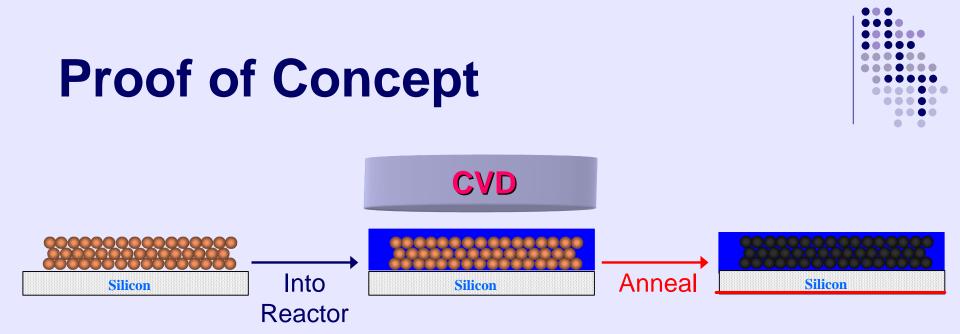

Co-deposition of Poroaen

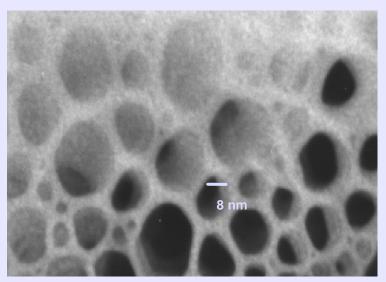
Polystyrene Beads as Porogen– Matrix Deposition Independent

Matrix

Processing Conditions

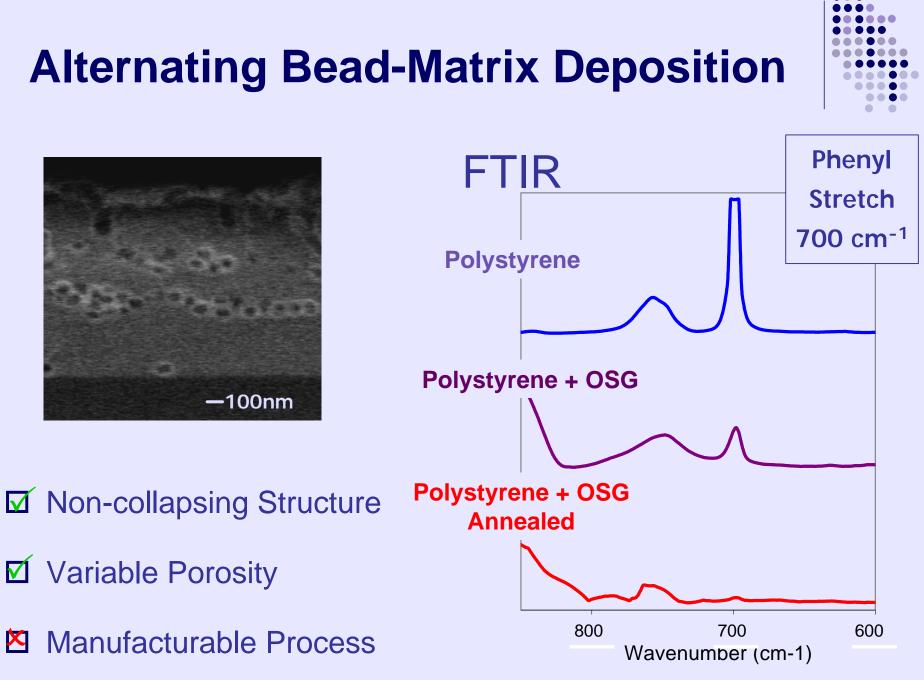



7


Ρ

Porogen: Polystyrene Beads

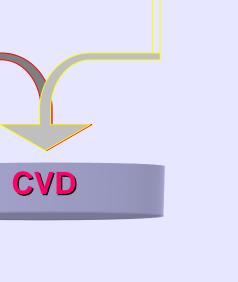
- Controlled Pore Size & Distribution
- Distributed Over Large Area
- Bead Diameters: 15nm (std = 3), 96nm (std = 9)
- No Covalent Bonding
- Decompose under 400°C
- Health=0, Flammability=1, Reactivity=0
- 1% Styrene in Air: Health=1, Flammability=0, Reactivity=1



dielectric constant 1.4 refractive index 1.067 (Qingguo Wu) ☑ Non-collapsing Structure

☑ Variable Porosity

Manufacturable Process



☑ Non-collapsing Structure

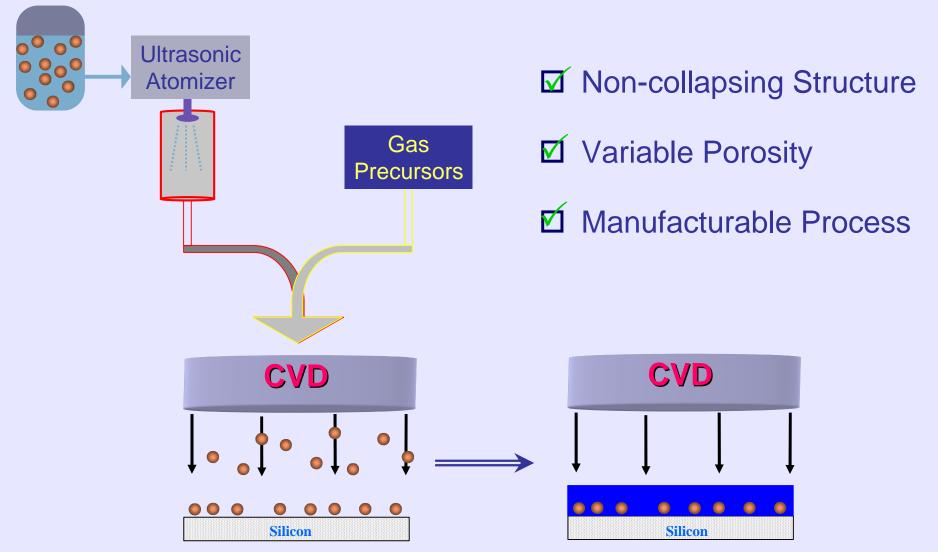
- ☑ Variable Porosity
- Manufacturable Process

Sequential Vacuum Deposition

Gas

Precursors

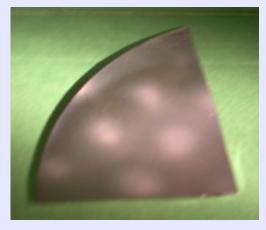
Sequential Vacuum Deposition


Ultrasonic Atomizer

Uses low ultrasonic vibrational energy for atomization
Dispenses microliters/min
Continuous or intermittent spray
Pressureless atomization
Can handle up to 30% solids

Sequential Vacuum Deposition

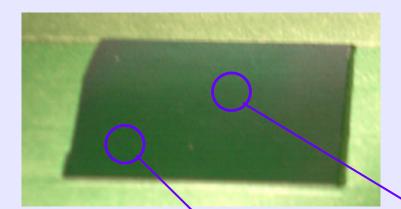
Processing Conditions

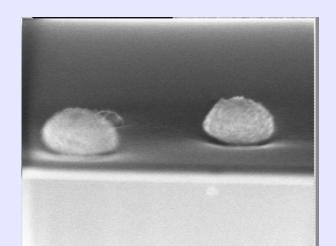

- Gas flowrate (20-100 sccm)
- Liquid flowrate (100-5000 μL/min)
- Chamber pressure (3 5 torr)
- Temperature $(20 30^{\circ}C)$
- Bead Concentration (0.0005 0.05% solids)

Bead Distribution

• Effect of Gas Flowrate

Low Gas Flowrate


High Gas Flowrate



Bead Distribution

Optical Microscopy Magnification: 500x ~4% beads by area

SEM

Conclusions

- Polystyrene beads viable porogen
 - Spherical voids created in CVD films
 - Dielectric constant = 1.4

- Sequential Vacuum Deposition
 - Ultrasonic Atomization
 - Compatible with current CVD process
 - Controlled Degree of Porosity

Acknowledgments

- NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
- MIT MRSEC Shared Facilities supported by the NSF
- Semiconductor Research Corporation/TI
- Gleason Research Group