

Bo Xie, Casey Finstad, and Anthony Muscat Department of Chemical and Environmental Engineering University of Arizona Tucson, AZ 85721

Outline

- Technical and ESH drivers for ultra-low k (ULK) cleaning
- Properties of supercritical carbon dioxide (scCO₂)
- Copper removal from silicon surfaces using scCO₂/chelator
- Water removal from ULK films using scCO₂/cosolvents
- ULK film repair with scCO₂ /Si-bearing chemistry
- Conclusions
- Future work
- Acknowledgements

Low-k Cleaning Requirements

- Residues contain C, H, O, F, Si, Cu, and barrier metal.
- Require good adhesion and device performance.
- Repeat clean for every metal layer present (5-10 times).

- PR removal
- Deveiling
- Cu oxide removal at via bottom
- Contamination trapped in pores
- Pore sealing

Low-k Cleaning Approaches

- Dry
 - Plasma ashing
 - ex. O_2 or N_2/H_2
 - Downstream plasma
- Wet
 - Organic solvent or inorganic acid
 - Surfactants
 - Corrosion inhibitors
 - Complexation agents
- Supercritical CO₂
 - Chelators (ppm)
 - Cosolvents < 5-7 vol%</p>

scCO₂ Processing Characteristics

- Solvating capability close to a liquid, but mass transfer properties near those of a gas
 - Control density of fluid with pressure
- Inexpensive
- Reusable
- Nonflammable
- Nontoxic
- Nonaqueous
 - Add co-solvent to introduce polarity
- Moderate critical parameters
 - T_c = 31°C and p_c = 72.8 atm

Comparison of Fluid Physical Properties

	Phase		
Property	Liquid	Supercritical	Gas
Density (g/cm ³)	1	0.1-1	0.001
Diffusivity (cm²/s)	10 ⁻⁵	10 ⁻³	10 ⁻¹
Surface Tension (dyne/cm)	20-80	0	0
Viscosity (Pa-s)	10 ⁻³	10 ⁻⁴ -10 ⁻⁵	10 ⁻⁵

scCO₂ Processing Schematic

Cu Removal with hfacH/scCO₂

- Mechanical removal mechanism
- Chemical removal mechanism
- Selectivity between oxidized and nonoxidized Cu

hfacH/scCO₂ Removes Oxidized Copper

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

C and F Peaks Unchanged by scCO₂ Rinse

scCO₂ Partially Removes Oxidized Cu

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

hfacH/scCO₂ Does Not Remove Metallic Cu

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

scCO₂ Does Not Remove Metallic Cu

Water Removal from ULK MSQ

- Porous ultra low k MSQ
- Blanket cured, etched, and etched/ashed films
- < 7% cosolvent addition</p>
- scCO₂ 45-55°C and 200-300 atm
- 2 min soak, fast release

Cosolvent Selection Criteria

- Dissolve water and post-etching residue \Rightarrow polar
 - 0-н с^{_0}_с с=о
- Complete miscibility with $scCO_2 \Rightarrow nonpolar$

- Minimize ESH impact \Rightarrow low vapor p (high boiling pt.)
 - ESH concerns with MeOH $CH_{2}O^{H}$

H₂C⁻H⁻CH₂

- pure scCO₂ at 277 atm and 47°C for 2 min soak
- water added to etched/ashed ULK MSQ film

- 5% methanol in scCO₂ at 282 atm and 48°C for 2 min soak
- 47% water removed from etched/ashed ULK MSQ film
- Relaxation of Si-O-Si lattice

Water Removed from ULK MSQ Film

- 7% n-propanol in scCO₂ at 289 atm and 49°C for 2 min soak
- 68% water removed from etched/ashed ULK MSQ film
- Relaxation of Si-O-Si lattice

Water Removed by Cosolvent Addition to scCO₂

 Pure scCO₂ (none) or % cosolvent added to scCO₂ at 200-300 atm and 45-55°C for 2 min soak

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Vacuum Anneal ULK MSQ

- Water removed with 200°C anneal similar to alcohol cosolvent/scCO₂ processes
- 300 and 400°C anneals induce lattice damage

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

ULK MSQ Film Repair with HMDS/n-Propanol

• $\uparrow CH_3$, Si-O-Si \downarrow iso/gem SiO-H \downarrow H-bonded SiO-H

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

- 1% TMCS in scCO₂ at 270 atm and 46°C for 2 min soak
- Increased CH₃ and Si-O-Si moieties in different chemical environments
- TMCS preferentially attacks isolated and geminal SiO-H *NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing*

- 1% TMCS in scCO₂ at 299 atm and 50°C for 2 min soak
- Both isolated OH groups and H-bonded water reacted

Low k Restoration Philip Clark, FSI

Process Mechanism

HMDS reacts with isolated silanol groups leaving a hydrophobic surface

• ? SiO-H

- ? C-H; Si-CH3
- 400°C facilitates silanol condensation reaction
 - ? SiO-H/H-bonded; Si-OH ? Si-O

HMDS + 400°C YIELDS BEST SILANOL REDUCTION

© 2003 FSI International, Inc. All rights reserved.

2003 Wafer Cleaning & Surface Preparation Workshop

always thinking // better

Conclusions

- Demonstrated Cu removal using ppm hfacH/scCO₂
 - Mechanical removal mechanism
 - Fast release (300 atm/min)
 - Chemical removal mechanism
 - Oxidized Cu to Cu^(II)
- Demonstrated water removal from ULK MSQ
 - Alcohol cosolvents dissolved in $scCO_2$ at 200-300 atm and 45-55°C
 - n-propanol and n-butanol offered best removal and lowest vapor pressure of additives studied
 - Process compatible with porous structure
 - Results similar to 200°C anneal
 - Removed H-bonded O-H groups
- Repair of ULK MSQ Film
 - TMCS and HMDS
 - Increased CH_3 and Si-O-Si moieties
 - Preferential attack of isolated/geminal SiO-H
 - H-bonded SiO-H reacted at higher p and T
 - Reduced H-bonded SiO-H with cosolvent

Future Work

- Cu Removal
 - Quantify selectivity between Cu and CuO
 - Measure Cu etching rate in hfacH/scCO₂
 - Verify proposed mechanism
- ULK Cleaning
 - Quantify amount of water removed
 - Complete drying possible?
 - Patterned ULK MSQ Films
 - Water removal
 - Post-RIE cleaning
 - New scCO₂ reactor with *in situ* FTIR
- ULK Repair
 - React H-bonded SiO-H's
 - Pore sealing
 - Molecular scaffolding

Acknowledgements

- Texas Instruments
 - Phil Matz, Laura Losey, Trace Hurd, Trish Smith
- International Sematech
 - Josh Wolf (ISMT Etch Program Manager, Intel Assignee)
 - Steve Burnett (ESH Program Manager)
- Motorola
 - Hunter Martinez
- IBM
 - Kenny McCullough
- NSF/SRC EBSM Engineering Research Center (EEC-9528813/2001-MC-425)