

## **EKC Technology**

# Post CMP Cleaning for Copper, STI and Tungsten

# **Presentation Agenda**

## Post CMP Process Background

Market

Mechanisms

**BCS - Buffered Chelating Solutions** 

- Post CMP after STI CMP
- Post CMP after W CMP
- Post CMP after Cu CMP
- Conclusion

## **EKC Technology**





## **EKC Technology**

# Post CMP Cleaning Process Background

## **Market projection for PCMP Cleaning Chemicals**



| Post-CMP Cleaning Chemical Market, \$ Millions | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Copper (\$0.10/wafer)                          | 0.00  | 0.00  | 0.34  | 0.97  | 2.89  | 4.72  | 8.63  | 12.49 | 18.61 | 25.70 | 32.88 |
| Aluminum (\$0.05/wafer)                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.39  | 0.81  | 1.25  | 1.86  | 2.57  | 2.90  |
| Tungsten (\$0.05/wafer)                        | 0.86  | 1.90  | 2.81  | 3.75  | 4.88  | 4.33  | 4.59  | 4.37  | 4.84  | 4.71  | 4.84  |
| Poly (\$.03/wafer)                             | 0.00  | 0.00  | 0.10  | 0.36  | 0.65  | 0.94  | 1.46  | 1.87  | 2.46  | 3.08  | 3.48  |
| STI (\$.03/wafer)                              | 0.03  | 0.13  | 0.26  | 0.44  | 0.87  | 1.18  | 1.62  | 1.87  | 2.46  | 2.83  | 3.19  |
| PMD/ILD (\$.03/wafer)                          | 1.17  | 1.99  | 2.96  | 3.92  | 5.53  | 5.43  | 7.28  | 7.87  | 7.81  | 7.71  | 7.83  |
| Total Market, \$ Millions                      | 2.06  | 4.02  | 6.47  | 9.43  | 14.83 | 17.01 | 24.39 | 29.73 | 38.03 | 46.60 | 55.13 |
| Weighted Post-CMP Chemical Cost, \$/Wafer      | 0.036 | 0.037 | 0.038 | 0.039 | 0.041 | 0.043 | 0.045 | 0.048 | 0.051 | 0.054 | 0.057 |

#### **EKC Technology**



## The Challenges ... Now and Ahead

| ITRS 2001                      |       |      |           |        |      |        |        |
|--------------------------------|-------|------|-----------|--------|------|--------|--------|
| Year of Production             | 2001  | 2002 | 2003      | 2004   | 2005 | 2006   | 2007   |
| DRAM 1/2 Pitch (mm)            | 130   | 115  | 100       | 90     | 80   | 70     | 65     |
| Water Consumption              |       |      |           |        |      |        |        |
| Fab UPW use (gal/300 mm wafer) | ~1240 |      | ~1060     |        |      | ~630   |        |
| Chemical Consumption           |       |      |           |        |      |        |        |
| Chemical use                   |       |      | Reduce ~5 | 5%/yr. |      | Reduce | ~5%/yr |
| Recycle/Reuse                  |       |      |           |        |      |        |        |
| Waste water recycle rate (%)   | 60%   |      | 65%       |        |      | 70%    |        |

## **EKC Technology**

www.dupont.com/ekctechnology

Page 5





## **Typical Contaminants for FEOL and BEOL**

| Typical Contaminants from Wet Cleaning |                   |                         |  |
|----------------------------------------|-------------------|-------------------------|--|
| Contaminats                            | Possible Source   | Possible Impact         |  |
| Sodium                                 | DI H2O, chemicals | Gate oxide integrity    |  |
| Aluminum                               | Chemicals         | Gate oxide kinetics     |  |
| Fe, Ni, Cr, Cu                         | Chemicals         | Min. carrier lifetime   |  |
| Zinc                                   | Chemicals         | NFU                     |  |
| Calcium                                | Chemicals, DI H2O | Gate oxide integrity    |  |
| Boron                                  | DI H2O, chemicals | Gate oxide integrity    |  |
| Organics                               | DI H2O, H2O2      | Thin-film grow th, haze |  |
| Phosphate                              | Chemicals         | Gate oxide integrity    |  |
| Fluoride                               | HF, DI H2O        | Gate oxide kinetics     |  |
| Chloride                               | HCI               | Corrosion               |  |
| Ammonia                                | NH4OH             | Haze                    |  |
| Sulfate                                | H2SO4             | Haze                    |  |
| Oxygen                                 | DI H2O            | Thin-film quality       |  |
| Particle                               | Acids, DI H2O     | Gate oxide integrity    |  |
| Bacteria                               | DI H2O            | Paricle-induced defects |  |
| Silica                                 | DI H2O            | Paricle-induced defects |  |

Semicon. Inter. p. 40, March, 2002

### **EKC Technology**



## **Background on BCS - Buffered Chelating Solutions**

Semiconductors manufacturers needed to effectively remove postetch and post-ash cleaning chemistries without allowing corrosion in the interconnect structure and minimizing surface contamination

- Replacement of IPA Safety and environmental benefits
- Neutralization of amines Buffering effect desirable for stability and capacity
- Capture and prevent re-deposit of dissolved species Chelators can be very effective
- Reduction of rinse water consumption

The principles learned from this application became the basis for similar work in post CMP cleaning



Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved



The miracles of science

# Adsorption of Trace Metals vs pH on Silicon Oxide



<sup>1.</sup> S.F. Cheah, PhD Disertation

2. K.B. Agashe, et al; J. Colliod & Inter. Sci.; 185, p174 (1997)

#### **EKC Technology**

www.dupont.com/ekctechnology



# TXRF Results Before and After BCS Processes (at pH 4.2)



**BCS = PCMP5000<sup>™</sup>**, OnTrak DSS Series 1, 45 sec/brush box. Chemistry in first brush box only.

**EKC Technology** 

www.dupont.com/ekctechnology



# **Post CMP Requirements**

• Excellent throughput

•No negative effects on the device and/or films, including standard and low-k dielectrics

- Reduce surface particles
- Reduce mobile ion contamination
- Eliminate copper dendrite formation
- Reduces DI water consumption
- Low Cost of Ownership
- Environmentally friendly components, with waste stream compatibility

## **EKC Technology**

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved



The miracles of science

## **Mechanisms - Particle Binding Forces**

## **Particle size**

Adhesion is a function of particle diameter, contact area, surface roughness

#### **Electrostatic effects**

Function of zeta potentials and separation distance

## Van der Waals forces

Particle removal is determined by the net attraction of van der Waals attraction and electrostatic repulsion

## Chemical bonding and hydrogen bonding

Important "forces" for many particles, especially cerium oxide

## **EKC Technology**





## **Particle and Impurity Removal Mechanism**

## Mechanisms for removing impurities from wafers<sup>(1)</sup> Mild Physical - displace strongly adsorbed particles with a large volume of weakly adsorbed solvent. Mechanical Ultrasonic / megasonic Surface charge - use acids, bases or surfactants to effect the Si-OH or M-OH groups. Ion exchange - removing metal ions by adding acids. Redox of impurities - change the oxidation state or decompose the impurity. Etching the surface - the surface is etched (dissolved) to undercut the impurity. Severe

(1) SPWCC, March 4, 1996

## **EKC Technology**



## Wafer Cleaning Equipment

Dip Tanks

- Batch process, typically single cassette
- Evolved to include greater control in wafer and chemical handling
- Made more efficient with the addition of ultrasonic and megasonic
- **Spray Processors**
- Cassette
- Single wafer
- **Brush Cleaners**
- Stand alone units
- Modules integrated with polishing tool
- Chemistry limitations, including PVA compatibility

## **EKC Technology**

www.dupont.com/ekctechnology



The miracles of science

Copyright  $\ensuremath{\textcircled{O}}$  2003 E.I. du Pont de Nemours and Company. All rights reserved.



**EKC Technology** 

## Post CMP Cleaning after STI CMP with Ceria Slurries

Dr. Srini Raghavan, University of Arizona

## Background

Ceria based slurries are increasingly used in the CMP of CVD silicon oxide films to obtain STI structures

Unlike silica or alumina, ceria has redox characteristics

Removal of ceria particles from planarized surfaces may be possible using chemical reagents that can participate in redox reactions

Hydroxylamine is a reducing agent -

Is ceria-hydroxylamine reaction possible?

## **Objectives**

Study the dissolution of ceria in hydroxylamine based chemistries

Determine the effectiveness of hydroxylamine based chemistries in removing ceria particles from planarized surfaces



The miracles of science

## EKC Technology

www.dupont.com/ekctechnology



## **Materials & Methods**

Pourbaix diagrams were constructed using STABCAL

Dissolution experiments were carried out in a controlled environment lab scale reactor

Concentration of Cerium was determined by ICPMS

Polishing experiments were carried out on a IPEC472 CMP Polisher

Pad: IC1000 perforated pad

Slurry: STI2100 RA3, pH=4.9

Post CMP cleaning tests were performed in a SSEC Megasonic cleaner

Cleaned wafers were scanned using KLA SP1 scanner

Zeta potential measurements using Delsa 440SX



### **EKC Technology**

www.dupont.com/ekctechnology



## Potential-pH Diagram of Ce-H<sub>2</sub>O System



Solid cerium species: Ce,
CeO<sub>2</sub>, Ce<sub>2</sub>O<sub>3</sub>, CeH<sub>2</sub> and
Ce(OH)3

★Aqueous cerium species: Ce<sup>2+</sup>, Ce<sup>3+</sup>, Ce<sup>4+</sup>, CeOH<sup>3+</sup>, Ce(OH)<sub>2</sub><sup>2+</sup>, Ce<sub>2</sub>(OH)<sub>3</sub><sup>5+</sup>, Ce<sub>2</sub>(OH)<sub>4</sub><sup>4+</sup>, Ce<sub>3</sub>(OH)<sub>5</sub><sup>4+</sup> and Ce<sub>6</sub>(OH)<sub>12</sub><sup>12+</sup>



#### **EKC Technology**

#### www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

Page 17

**(I) PINT** The miracles of science<sup>®</sup>

## **Predicted Solubility of Ceria in Water**



Based on total cerium concentration of 0.1 mol/lit

The solubility range (pH conditions) of Ceria can be enhanced by lowering the redox potential of the solution.



#### **EKC Technology**

Page 18



The miracles of science\*

## **Redox Behavior of Ceria-Hydroxylamine**



In a sulfate system, the  $Ce^{3+}/CeO_2$  equilibrium intersects the solution redox at pH 3

Addition of hydroxylamine lowers the redox potential of the system -  $Ce^{3+}/CeO_2$  equilibrium intersects the solution redox at pH 6

## Potential-pH diagram of hydroxylaminewater system overlaid on Ce-water system



The miracles of science<sup>\*</sup>

#### EKC Technology

www.dupont.com/ekctechnology



## Potential-pH Diagram of Ce-Citric acid-H<sub>2</sub>O System



Ce is complexed by citrate ions-Ce(Cit) and Ce(Cit) $_2^{2-}$ 

Due to the complexation, CeO<sub>2</sub> can be dissolved at higher pH conditions (pH 9)

## Potential-pH diagram of Ce-citric acidwater system overlaid on Ce-water system



The miracles of science<sup>\*</sup>

### EKC Technology

www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.



## **Dissolution of Ceria in Hydroxylamine Solutions**



0.5M hydroxylamine solution0.01% ceriaKinetics of dissolution of ceria is pH dependent



#### **EKC Technology**

www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.



## **Dissolution of Ceria in** Hydroxylamine + Citric acid Solutions



0.5M hydroxylamine solution with varying levels of citric acid

0.01% ceria

Dissolution at pH 8 > pH 6

Highest dissolution at 0.01M citric acid (dissolution is suppressed at 0.1M citric acid)



#### EKC Technology

#### www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.



## **Dissolution of Ceria in Citric acid Solutions**



Solution with varying levels of citric acid (No hydroxylamine)

0.01% ceria

Dissolution at pH 8 ~ pH 6

Highest dissolution at 0.01M citric acid

Absence of hydroxylamine increases dissolution at pH 6



The miracles of science<sup>\*</sup>

#### **EKC Technology**

www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

## **Proposed Redox Reactions**

| Oxidation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| $NH_2OH + NH_3OH^+ \rightarrow NO_2^- + NH_4^+ + 3H^+ + 2e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $E^{o}_{oxdn} = 0.162 V$ |  |
| Reduction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |  |
| $CeO_2 + e^- + H^+ + H_2O \rightarrow Ce(OH)_3 \qquad E^{o}_{redn} = 0.070 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |  |
| Overall:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |  |
| $2\text{CeO}_2 + \text{NH}_2\text{OH} + \text{NH}_3\text{OH}^+ + 2\text{H}_2\text{O} \rightarrow 2\text{Ce(OH)}_3 + \text{NO}_2^- + \text{NH}_2\text{OH}^- + NH$ | $H_4^+ + H^+$            |  |
| $E^{o} = 0.232 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |  |

Formation of  $Ce(OH)_3$  is possible due to the redox behavior of hydroxylamine Formation of  $Ce(OH)_3$  instead of  $Ce^{3+}$  lowers the dissolution rate of ceria in the presence of hydroxylamine



## EKC Technology



## **Zeta Potential - Ceria particles**



Isoelectric point (IEP) of ceria in typical salt solution is at pH 5 Citric acid adsorbs on ceria particles – Shifts IEP to lower value- pH 3



### **EKC Technology**

www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.



## **Cleaning Tests**

8" CVD oxide wafers

Polish process:

2psi/1psi/100rpm/107rpm/200ml/20sec

Buff process:

1psi/0.5psi/100rpm/107rpm/DIW/10sec

Megasonic cleaning – 10 cycles

Finally surface was scanned for particles with KLA SP1 @ 0.19µm



The miracles of science<sup>®</sup>

#### **EKC Technology**



## **Effect of Citric acid Concentration on Cleaning**



Solution pH = 8

Cleaning time = 100 Sec

Effective cleaning at lower levels of hydroxylamine

1000ppm citric acid (~0.05M) with 0.1M hydroxylamine has the best result



#### **EKC Technology**

#### www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.



## **Effect of Cleaning Time**



### Solution pH = 8

# of particles decrease with cleaning time

Decrease is strongly visible in 0.1M hydroxylamine + 2000ppm citric acid system



#### **EKC Technology**

#### www.dupont.com/ekctechnology

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.



## Conclusions

Redox reactions between hydroxylamine and ceria do not increase the kinetics of ceria dissolution

Hydroxylamine could enable the formation of metastable  $Ce(OH)_3$ around pH 6

Addition of citric acid enhances the dissolution rate

Solution of hydroxylamine and citric acid at pH 8 can be used to remove ceria particles



The miracles of science

#### EKC Technology





## **EKC Technology**

# Post CMP Cleaning after W CMP

## **Background Information for Tungsten**

- Dilute NH<sub>4</sub>OH has been a favorite for PCMP for removing particles after tungsten and oxide CMP
  - High pH takes advantage of zeta potential effect
- Other PCMP solutions have been designed around TMAH chemistries
  - $NH_4OH/TMAH$  solutions have had some success
  - Adding EDTA as a chelator can improve metal ion removal
- Potential problems are incomplete metal ion removal (slurry formulations may include low concentrations of transition metals), etching of polysilicon surfaces, difficulties in removing certain inhibitor films.

T. M. Pan, et al JECS 149(6) G336 (2002)

## EKC Technology



## **BCS product (pH 4.2) used for W PCMP Cleaning**

• Used in a major US fab to clean wafers planarized with a hydrogen peroxide and silica slurry

• LPDs reduction by more than 50% compared to standard ammonium hydroxide cleaning processes

• Particular issue of Fe contamination: EKC cleaning solution was able to reduce the levels of residual Fe by a factor of more than 10 times, compared to the standard ammonium hydroxide cleaning processes

• Oxide buff previously used to lower metal contamination eliminated, increasing throughput and reducing COO

•No Ti liner loss or Tungsten plug coring







**EKC Technology** 

# Post CMP Cleaning after Cu CMP

# Desirable BCS Characteristics for Cu PCMP

- •Aqueous, with pH  $\sim$  7.5 (vs. pH 4.2)
- Contains additional chelating agents and anions
- Will not corrode sensitive metal films
- Can reduce brush loading from Cu oxides
- Wide process window
- Slurry waste drain compatible
- Environmentally safe
- Will not corrode CMP process equipment
- No sign of bacteria/fungus/mold/yeast growth
- No ammonium hydroxide
- No fluorides

## EKC Technology



**(1) PINT** The miracles of science<sup>\*</sup>

## **Copper Pourbaix**



**EKC Technology** 

www.dupont.com/ekctechnology



# **Copper Oxide Through the pH Ranges**



#### **EKC Technology**

#### www.dupont.com/ekctechnology

The miracles of science

Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

# **Electrochemical Reduction of Copper Oxide**

(Oxide thickness after 10 minutes of exposure of Cu to EKC solution)



### **EKC Technology**

#### www.dupont.com/ekctechnology



# **Comparison of Cu PCMP Cleaning Processes**

Copper thickness change (Dual-sided scrubber process)



Note: Negative number indicates thickness loss (corrosion) Positive number indicates oxide growth on copper film Dilution is 1:10 (LPX-100:DI Water) Brush Box residence time is 10 seconds (2 brush boxes)

### EKC Technology

www.dupont.com/ekctechnology



The miracles of science

## Defectivity and Surface Roughness on TEOS and Cu Wafers after Cleaning with BCS (pH 7.5)



TEOS and Cu wafers polished with EKC's Cu POR on 472 and cleaned

#### **EKC Technology**

#### www.dupont.com/ekctechnology

Copyright  $\ensuremath{\textcircled{O}}$  2003 E.I. du Pont de Nemours and Company. All rights reserved.



## **Pourbaix Diagram for Copper with BTAH**



**EKC Technology** 



The miracles of science\*

## Electrochemical Evaluation of EKC PCMP Products for Removal of Benzotriazole (BTA) from Copper Surfaces

# The results below demonstrate the removal of BTA from copper surfaces using LPX-100

Copper coated silicon wafer pieces, 1cm x 3cm, were immersed in oxidizer solution containing 140 ppm benzotriazole (BTA) for ten minutes. This applied a protective layer of the BTA passivation agent to the surface of the copper pieces. A similar set of copper pieces were immersed in the same oxidizer solution without BTA for ten minutes. Both the BTA passivated and non-passivated pieces were tested electrochemically using a computer controlled Solartron Electrochemical Interface as operated by means of Scribner software.

Open Circuit Potential (OCP) measurements were conducted in fresh oxidizer solutions using the passivated and non-passivated pieces. Passivated pieces produced curves approaching +0.19V after a 500-second time frame. Non-passivated pieces produced curves approaching +0.075V. Fresh sets of both passivated and non-passivated pieces were rinsed in EKC LPX-100 for 3 minutes in glass beakers with stirring at 250 rpm. The piece rinsed with LPX-100 produced an OCP of +0.067V after 500 seconds

## EKC Technology

www.dupont.com/ekctechnology



## Post CMP Cleaning Results using pH 7.5 BCS with Optimized Megasonic + Brush + SRD

(Customer Data)





BCS (PCMP5510<sup>™</sup>) cleaned both Copper and Oxide

EKC Technology

www.dupont.com/ekctechnology



Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

## **VPD-ICP/MS and TRXF Data for BD after Polishing**

| Rlock Diamond        |                      | TXRF    |                    |                  |
|----------------------|----------------------|---------|--------------------|------------------|
| DIACK DIAMONU        | Background           | LPX-100 | Polished/LPX-100   | Polished/LPX-100 |
| Са                   | 2.4                  | *       | *                  | *                |
| K                    | 2.3                  | *       | *                  | 13 ± 54          |
| Na                   | 2.6                  | *       | *                  | N/A              |
| AI                   | 48.0                 | 5.3     | 58.0               | N/A              |
| Fe                   | 2.9                  | 0.2     | 1.6                | 1.1 ± 6.9        |
| Cr                   | 2.7                  | 1.4     | 1.2                | 8.0 ± 12         |
| Ni                   | 0.3                  | 0.3     | 0.4                | 5.4 ± 5          |
| Zn                   | 4.2                  | *       | *                  | 1.6 ± 4.0        |
| Mg                   | 0.5                  | 0.5     | *                  | N/A              |
| Cu                   | 0.6                  | 2.8     | 1.0                | *                |
| S                    | N/A                  | N/A     | N/A                | 180 ± 250        |
| CI                   | N/A                  | N/A     | N/A                | 280 ± 140        |
| Ti                   | N/A                  | N/A     | N/A                | *                |
| V                    | N/A                  | N/A     | N/A                | 7.3 ± 15         |
| Mn                   | N/A                  | N/A     | N/A                | 0 ± 9.6          |
| Со                   | N/A                  | N/A     | N/A                | 4.6 ± 5.5        |
| Concentration=1E10 a | toms/cm <sup>2</sup> |         | * = at or below DL |                  |

200mm Black Diamond blanket wafers were polished with EKC Barrier Slurry on IPEC 472. Wafers were cleaned in a DSS with 10% PCMP5510<sup>™</sup>.

**EKC Technology** 

www.dupont.com/ekctechnology Page 43





## BCS (PCMP5510<sup>™</sup>) Static Etch Rates and Stability

| Film Type | Etch Rate (A/min) |
|-----------|-------------------|
| Та        | 0                 |
| TaN       | 0                 |
| Cu        | < 1               |

- Tests run for 60 minutes at room temperature using full concentration (no dilution) to simulate worst-case scenario
- Typical manufacturing processes will be < 30 seconds cleaning time at 1:10 dilution (PCMP5510<sup>™</sup>:DI Water)

•pH range of 7.4 - 7.6 held over dilution range of 1:1 to 1:50

•No sign of bacteria/fungus/mold/yeast growth over several dilutions for up to 16 days. DI water showed high counts at 8 and 16 day intervals.

#### **EKC Technology**







# **EKC Technology**

# Conclusion