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Market projection for PCMP Cleaning ChemicalsMarket projection for PCMP Cleaning Chemicals

Source: Laredo Technology
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The Challenges …Now and Ahead

ITRS 2001 
Year of Production 2001 2002 2003 2004 2005 2006 2007

DRAM 1/2 Pitch (mm) 130 115 100 90 80 70 65
Water Consumption
Fab UPW use (gal/300 mm wafer) ~1240 ~1060 ~630
Chemical Consumption
Chemical use Reduce ~5%/yr.     Reduce ~5%/yr
Recycle/Reuse
Waste water recycle rate (%) 60% 65% 70%
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Typical Contaminants for FEOL and BEOLTypical Contaminants for FEOL and BEOL
           Typical Contaminants from Wet Cleaning
Contaminats Possible Source Possible Impact
Sodium DI H2O, chemicals Gate oxide integrity
Aluminum Chemicals Gate oxide kinetics
Fe, Ni, Cr, Cu Chemicals Min. carrier lifetime
Zinc Chemicals NFU
Calcium Chemicals, DI H2O Gate oxide integrity
Boron DI H2O, chemicals Gate oxide integrity
Organics DI H2O, H2O2 Thin-f ilm grow th, haze
Phosphate Chemicals Gate oxide integrity
Fluoride HF, DI H2O Gate oxide kinetics
Chloride HCl Corrosion
Ammonia NH4OH Haze
Sulfate H2SO4 Haze
Oxygen DI H2O Thin-film quality
Particle Acids, DI H2O Gate oxide integrity
Bacteria DI H2O Paricle-induced defects
Silica DI H2O Paricle-induced defects

Semicon. Inter. p. 40, March, 2002
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Background on BCS - Buffered Chelating SolutionsBackground on BCS - Buffered Chelating Solutions

Semiconductors manufacturers needed to effectively remove post-
etch and post-ash cleaning chemistries without allowing corrosion in 
the interconnect structure and minimizing surface contamination

Replacement of IPA - Safety and environmental benefits

Neutralization of amines - Buffering effect desirable for stability and 
capacity

Capture and prevent re-deposit of dissolved species - Chelators can be 
very effective 

Reduction of rinse water consumption

The principles learned from this application became the basis for 
similar work in post CMP cleaning
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Adsorption of Trace Metals vs pH
on Silicon Oxide
Adsorption of Trace Metals vs pH
on Silicon Oxide

1. S.F. Cheah, PhD Disertation

2. K.B. Agashe, et al; J. Colliod & Inter. Sci.; 185, p174 (1997)
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TXRF Results Before and After BCS Processes 
(at pH 4.2)
TXRF Results Before and After BCS Processes 
(at pH 4.2)

BCS = PCMP5000TM,  OnTrak DSS Series 1, 45 sec/brush box. 
Chemistry in first brush box only. 
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Post CMP RequirementsPost CMP Requirements
• Excellent throughput 

•No negative effects on the device and/or films, including standard 
and low-k dielectrics

• Reduce surface particles 

• Reduce mobile ion contamination

• Eliminate copper dendrite formation

• Reduces DI water consumption

• Low Cost of Ownership

• Environmentally friendly components, with waste stream 
compatibility
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Mechanisms - Particle Binding ForcesMechanisms - Particle Binding Forces

Particle size
Adhesion is a function of particle diameter, contact area, 
surface roughness

Electrostatic effects
Function of zeta potentials and separation distance

Van der Waals forces
Particle removal is determined by the net attraction of van der Waals 
attraction and electrostatic repulsion

Chemical bonding and hydrogen bonding
Important “forces” for many particles, especially cerium oxide

rev. 2/5/99
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Particle and Impurity Removal MechanismParticle and Impurity Removal Mechanism

Mechanisms for removing impurities from wafers(1)

Physical - displace strongly adsorbed particles with a large volume of 
weakly adsorbed solvent.

Mechanical

Ultrasonic / megasonic

Surface charge - use acids, bases or surfactants to effect the
Si-OH or M-OH groups.
Ion exchange - removing metal ions by adding acids.

Redox of impurities - change the oxidation state or decompose the 
impurity.

Etching the surface - the surface is etched (dissolved) to undercut the 
impurity.

Mild

Severe

(1) SPWCC, March 4, 1996

rev. 2/5/99
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Wafer Cleaning EquipmentWafer Cleaning Equipment

Dip Tanks
Batch process, typically single cassette

Evolved to include greater control in wafer and chemical handling

Made more efficient with the addition of ultrasonic and megasonic

Spray Processors
Cassette

Single wafer

Brush Cleaners
Stand alone units

Modules integrated with polishing tool

Chemistry limitations, including PVA compatibility



Post CMP Cleaning 
after STI CMP with Ceria Slurries

Dr. Srini Raghavan, University of Arizona

Post CMP Cleaning 
after STI CMP with Ceria Slurries

Dr. Srini Raghavan, University of Arizona
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BackgroundBackgroundBackground

Ceria based slurries are increasingly used in the CMP of CVD silicon oxide 
films to obtain STI structures 
Unlike silica or alumina, ceria has redox characteristics 
Removal of ceria particles from planarized surfaces may be possible using 
chemical reagents that can participate in redox reactions
Hydroxylamine is a reducing agent –

Is ceria-hydroxylamine reaction possible?

ObjectivesObjectives
Study the dissolution of ceria in hydroxylamine based chemistries

Determine the effectiveness of hydroxylamine based chemistries in 
removing ceria particles from planarized surfaces
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Materials & MethodsMaterials & MethodsMaterials & Methods

Pourbaix diagrams were constructed using STABCAL 
Dissolution experiments were carried out in a controlled 
environment lab scale reactor
Concentration of Cerium was determined by ICPMS  
Polishing experiments were carried out on a  IPEC472 CMP 
Polisher 

Pad: IC1000 perforated pad
Slurry: STI2100 RA3, pH=4.9

Post CMP cleaning tests were performed in a SSEC Megasonic  
cleaner 
Cleaned wafers were scanned using KLA SP1 scanner
Zeta potential measurements using Delsa 440SX
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Potential-pH Diagram of Ce-H2O SystemPotentialPotential--pH Diagram of CepH Diagram of Ce--HH22O SystemO System
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Predicted Solubility of Ceria in WaterPredicted Solubility of Ceria in WaterPredicted Solubility of Ceria in Water
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The solubility range (pH conditions) of Ceria can be  
enhanced by lowering the redox potential of the solution.
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Redox Behavior of Ceria-HydroxylamineRedox Behavior of CeriaRedox Behavior of Ceria--HydroxylamineHydroxylamine

In a sulfate system, the 
Ce3+/CeO2 equilibrium 
intersects the solution redox at 
pH 3
Addition of hydroxylamine 
lowers the redox potential of the 
system - Ce3+/CeO2 equilibrium 
intersects the solution redox at 
pH 6
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Potential-pH Diagram of Ce-Citric acid-H2O SystemPotentialPotential--pH Diagram of pH Diagram of CeCe--Citric acidCitric acid--HH22O SystemO System
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Dissolution of Ceria in Hydroxylamine SolutionsDissolution of Ceria in Dissolution of Ceria in HydroxylamineHydroxylamine SolutionsSolutions
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pH dependent 
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Dissolution of Ceria in 
Hydroxylamine + Citric acid Solutions
Dissolution of Ceria in Dissolution of Ceria in 
Hydroxylamine + Citric acid SolutionsHydroxylamine + Citric acid Solutions
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Dissolution of Ceria in Citric acid SolutionsDissolution of Ceria in Citric acid SolutionsDissolution of Ceria in Citric acid Solutions
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Proposed Redox ReactionsProposed Redox ReactionsProposed Redox Reactions

Oxidation:

NH2OH + NH3OH+ → NO2
− + NH4

+ + 3H+ +2e− Eo
oxdn = 0.162 V

Reduction:

CeO2 + e− + H+ + H2O   → Ce(OH)3 Eo
redn = 0.070 V

-------------------------------------------------------------------------------------

Overall:

2CeO2 + NH2OH + NH3OH+ + 2H2O → 2Ce(OH)3 + NO2
− + NH4

+ + H+

Eo = 0.232 V

-------------------------------------------------------------------------------------

Formation of Ce(OH)3 is possible due to the redox behavior of hydroxylamine

Formation of Ce(OH)3 instead of Ce3+ lowers the dissolution rate of ceria in the 
presence of hydroxylamine
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Zeta Potential - Ceria particlesZeta Potential Zeta Potential -- Ceria particlesCeria particles

Isoelectric point (IEP) of ceria in typical salt solution is at pH 5

Citric acid adsorbs on ceria particles – Shifts IEP to lower value- pH 3
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Cleaning TestsCleaning TestsCleaning Tests

8” CVD oxide wafers

Polish process:

2psi/1psi/100rpm/107rpm/200ml/20sec

Buff process:

1psi/0.5psi/100rpm/107rpm/DIW/10sec

Megasonic cleaning – 10 cycles 

Finally surface was scanned for particles with KLA SP1 @ 
0.19µm
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ConclusionsConclusionsConclusions

Redox reactions between hydroxylamine and ceria do not increase 
the kinetics of ceria dissolution

Hydroxylamine could enable the formation of metastable Ce(OH)3

around pH 6 

Addition of citric acid enhances the dissolution rate

Solution of hydroxylamine and citric acid at pH 8 can be used to
remove ceria particles



Post CMP Cleaning 
after W CMP
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Background Information for TungstenBackground Information for Tungsten

• Dilute NH4OH has been a favorite for PCMP for removing 
particles after tungsten and oxide CMP

High pH takes advantage of zeta potential effect

• Other PCMP solutions have been designed around TMAH 
chemistries

NH4OH/TMAH solutions have had some success

Adding EDTA as a chelator can improve metal ion removal

• Potential problems are incomplete metal ion removal 
(slurry formulations may include low concentrations of 
transition metals), etching of polysilicon surfaces, 
difficulties in removing certain inhibitor films.

T. M. Pan, et al JECS 149(6) G336 (2002)



Page 32Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

www.dupont.com/ekctechnology

BCS product (pH 4.2) used for W PCMP CleaningBCS product (pH 4.2) used for W PCMP Cleaning

• Used in a major US fab to clean wafers planarized with a 
hydrogen peroxide and silica slurry

• LPDs reduction by more than 50% compared to standard 
ammonium hydroxide cleaning processes

• Particular issue of Fe contamination: EKC cleaning solution 
was able to reduce the levels of residual Fe by a factor of more
than 10 times, compared to the standard ammonium hydroxide 
cleaning processes

• Oxide buff previously used to lower metal contamination 
eliminated, increasing throughput and reducing COO

•No Ti liner loss or Tungsten plug coring 



Post CMP Cleaning 
after Cu CMP
Post CMP Cleaning 
after Cu CMP
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Desirable BCS Characteristics for Cu PCMPDesirable BCS Characteristics for Cu PCMP

•Aqueous, with pH ~ 7.5 (vs. pH 4.2)
• Contains additional chelating agents and anions
• Will not corrode sensitive metal films
• Can reduce brush loading from Cu oxides
• Wide process window
• Slurry waste drain compatible
• Environmentally safe
• Will not corrode CMP process equipment
• No sign of bacteria/fungus/mold/yeast growth
• No ammonium hydroxide
• No fluorides



Page 35Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

www.dupont.com/ekctechnology

Copper Pourbaix

Rev. 6/9/99
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Copper Oxide Through the pH RangesCopper Oxide Through the pH Ranges
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Electrochemical Reduction of Copper OxideElectrochemical Reduction of Copper Oxide
Electrochemical Reduction of Copper Oxide

(Oxide thickness after 10 minutes of exposure of Cu to EKC solution)
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Comparison of Cu PCMP Cleaning Processes
Copper thickness change (Dual-sided scrubber process)
Comparison of Cu PCMP Cleaning Processes
Copper thickness change (Dual-sided scrubber process)

Note: Negative number indicates thickness loss (corrosion)
Positive number indicates oxide growth on copper film
Dilution is 1:10 (LPX-100:DI Water) 
Brush Box residence time is 10 seconds (2 brush boxes)
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Defectivity and Surface Roughness on TEOS and Cu 
Wafers after Cleaning with BCS (pH 7.5)
Defectivity and Surface Roughness on TEOS and Cu 
Wafers after Cleaning with BCS (pH 7.5)
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Pourbaix Diagram for Copper with BTAHPourbaix Diagram for Copper with BTAH



Page 41Copyright © 2003 E.I. du Pont de Nemours and Company. All rights reserved.

www.dupont.com/ekctechnology

Electrochemical Evaluation of EKC PCMP Products for 
Removal of Benzotriazole (BTA) from Copper Surfaces
Electrochemical Evaluation of EKC PCMP Products for 
Removal of Benzotriazole (BTA) from Copper Surfaces

The results below demonstrate the removal of BTA from copper 
surfaces using LPX-100
Copper coated silicon wafer pieces, 1cm x 3cm, were immersed in oxidizer solution 
containing 140 ppm benzotriazole (BTA) for ten minutes.  This applied a protective 
layer of the BTA passivation agent to the surface of the copper pieces.  A similar set 
of copper pieces were immersed in the same oxidizer solution without BTA for ten 
minutes.  Both the BTA passivated and non-passivated pieces were tested 
electrochemically using a computer controlled Solartron Electrochemical Interface as 
operated by means of Scribner software.  

Open Circuit Potential (OCP) measurements were conducted in fresh oxidizer 
solutions using the passivated and non-passivated pieces.  Passivated pieces 
produced curves approaching +0.19V after a 500-second time frame.  Non-passivated
pieces produced curves approaching +0.075V.  Fresh sets of both passivated and 
non-passivated pieces were rinsed in EKC LPX-100 for 3 minutes in glass beakers 
with stirring at 250 rpm.  The piece rinsed with LPX-100 produced an OCP of +0.067V 
after 500 seconds 
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Post CMP Cleaning Results using pH 7.5 BCS
with Optimized Megasonic + Brush + SRD

(Customer Data)

Post CMP Cleaning Results using pH 7.5 BCS
with Optimized Megasonic + Brush + SRD

(Customer Data)

BCS (PCMP5510TM) cleaned both Copper and Oxide
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VPD-ICP/MS and TRXF Data for BD after PolishingVPD-ICP/MS and TRXF Data for BD after Polishing

TXRF
Background LPX-100 Polished/LPX-100 Polished/LPX-100

Ca 2.4 * * *
K 2.3 * * 13 ± 54

Na 2.6 * * N/A
Al 48.0 5.3 58.0 N/A
Fe 2.9 0.2 1.6 1.1 ± 6.9
Cr 2.7 1.4 1.2 8.0 ± 12
Ni 0.3 0.3 0.4 5.4 ± 5
Zn 4.2 * * 1.6 ± 4.0
Mg 0.5 0.5 * N/A
Cu 0.6 2.8 1.0 *
S N/A N/A N/A 180 ± 250
Cl N/A N/A N/A 280 ± 140
Ti N/A N/A N/A *
V N/A N/A N/A 7.3 ± 15

Mn N/A N/A N/A 0 ± 9.6
Co N/A N/A N/A 4.6 ± 5.5

Concentration=1E10 atoms/cm2 * = at or below DL

Black Diamond VPD-ICPMS

200mm Black Diamond blanket wafers were polished with EKC Barrier Slurry 
on IPEC 472.  Wafers were cleaned in a DSS with 10% PCMP5510TM.
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Film Type Etch Rate (A/min)
Ta 0

TaN 0
Cu < 1

• Tests run for 60 minutes at room temperature using full concentration 
(no dilution) to simulate worst-case scenario

• Typical manufacturing processes will be < 30 seconds cleaning time at 1:10 
dilution (PCMP5510TM:DI Water)

•pH range of 7.4 - 7.6 held over dilution range of 1:1 to 1:50

•No sign of bacteria/fungus/mold/yeast growth over several dilutions for up to 16 
days.  DI water showed high counts at 8 and 16 day intervals.



ConclusionConclusion


