Environmental Technologies & Management Systems in the Semiconductor Industry: The Perspective of an Equipment Maker

Sébastien Raoux, Ph.D.

Acting Director of Technology

Environmental Solutions Product Division Applied Materials

Presentation to NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing May 8, 2003

Environmental Solutions Product Division

S. Raoux 5/8/03 - 1

APPLIED MATERIALS[®]

Outline

- Environmental impact and industrial ecology in the semiconductor industry
- Applied Materials' Environmental Solutions Product Division
- Progress on CVD chamber cleaning
- Solutions for dielectric etch emissions
- Pumps electrical consumption
- Abatement solutions gap analysis and validation
- Drivers for green manufacturing

A Typical Semiconductor Fab (300k 200mm Wafers/Year)

- Si wafers
 - 10 tons/yr

- Electricity
 - 1.2kWh/cm² of Si produced
 - ~ a town of 10,000

- Air Emissions
 - HAPs (max 20 tons/yr)
 - VOCs (40-100 tons/yr)
 - PFCs (>100 kgCE/wafer) (20,000 tons CE/yr)

Chemicals

- Metal / dielectric precursor chemicals
- HAPs precursors
- PFCs precursors
- Solvents
- CMP materials

Chips
 ~10,000's \$/wafer

Water

- 15.5 l/cm² of Si produced
- ~ a town of 20,000

Solid & Liquid Waste

- Producing 1 PC = 63 kg of waste material generated
 - ~43 kg of non-hazardous waste
 - ~20 kg of hazardous waste

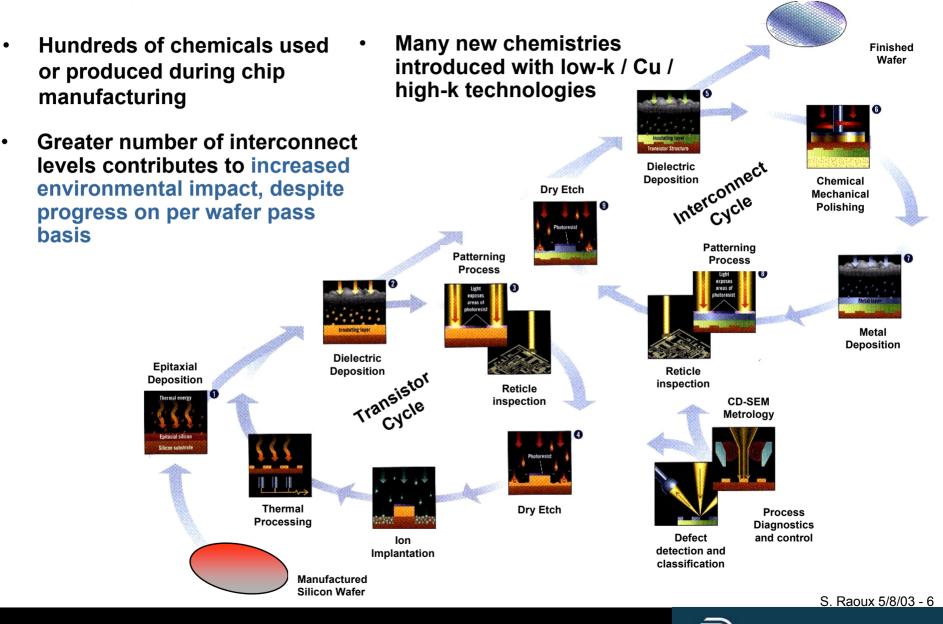
Environmental Issues and Regulations

	HAPs	VOCs	PFCs	Water	Solid Waste	Energy				
Regulatory agencies	Regulated on a per fab basis	Regulated on a per fab basis	Memorandum Of Understanding	Regulated (contamination)	Regulated (haz. waste)	Not regulated but local limitations				
Chip manufacturers	Want <u>their suppliers</u> to follow industry protocols and provide Product Environmental Assessment (PEA) report <u>prior to</u> buying the tool									
SEMI Standards	SEMI S2 has be balance - dem	SEMI E6 revised to include power measurement (03/03)								
	E	Equipment Environmental Characterization Guidelines 3.0								
Industry protocols	Required	Required but does not define how to measure	Required Protocol initially established by PFC Leadership Group	Required PCW consumption measurement	Required estimate solid waste generated during PM and process	AMAT's protocol proposed to SEMI				
Applied Materials Product Development Process	Require Product Environmental Assessment to be performed as part of product development Follow Equipment Environmental Characterization Guidelines 3.0 - Power Measurement Protocol - Process Cooling Water Measurement Protocol									

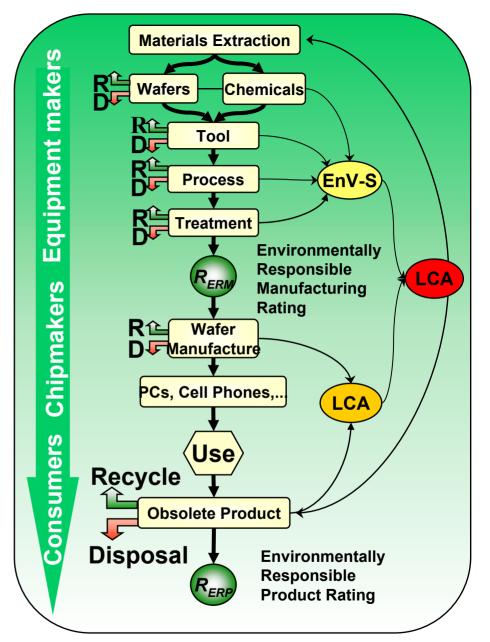

• Summary of the requirements, standards and regulations regarding the environmental impact of semiconductor manufacturing tools

S. Raoux 5/8/03 - 4
APPLIED MATERIALS®

Typical Customer's Environmental Requirements


- Complete emissions characterization
- Provide POU abatement . . . or at least a suggestion
- Exhaust materials compatible with exhaust gases/byproducts
- Exhausts and drains segregated
- Evidence of water use optimization
- Use of recyclable materials
- Disclosure of environmental risks of installing and operating tool
- Supporting environmental data, plans, roadmaps, etc.
- Compliance with environmental requirements
- Sign-off by customer's EHS Manager prior to "tool acceptance"

Need method to provide information with confidence and reduced risk


Environmental Challenges and the Chip Cycle

APPLIED MATERIALS®

Chip Manufacturing and Industrial Ecology

- Life-Cycle Analysis (LCA) is an objective process to evaluate relevant environmental, economic and technological implications of a material, process or product over its entire life span, from creation to waste or, preferably, to recycling*
- Environmental Value System** (EnV-S) is an equipment-centric analysis to aid equipment selection, design, and process evaluations in support of sustainable decision making

* Source: T.E. Graedel, B.R. Allenby, "Industrial Ecology", p.108

** Developed in collaboration between Applied Materials and the University of California at Berkeley

Environmental Solutions Product Division

S. Raoux 5/8/03 - 7

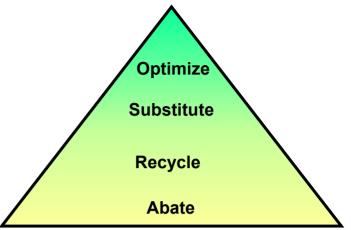
APPLIED MATERIALS®

Outline

- Environmental impact and industrial ecology in the semiconductor industry
- Applied Materials' Environmental Solutions Product Division
- Progress on CVD chamber cleaning
- Solutions for dielectric etch emissions
- Pumps electrical consumption
- Abatement solutions gap analysis and validation
- Drivers for green manufacturing

Environmental Solutions Product Division

- Mission
 - Demonstrate leadership by providing environmental products and services for the mutual benefit of customers, the environment, and the community
- Motto
 - Better Environment by Design
- ESPD addresses environmental issues by:

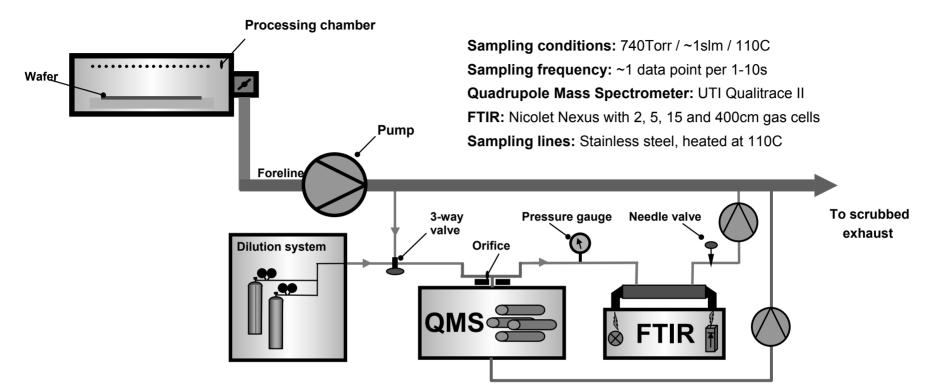


- Developing emissions abatement/pump products to solve industry challenges
- Validating other abatement/pump vendors' products through comprehensive characterization
- Measuring gaseous and liquid emissions of Applied Materials equipment for proactive environmental management by product divisions

Strategies to Reduce Environmental Impact

- Solutions integrated to the process system
 - Address the problem at its source
 - Focus on point of use (POU)
- Efficient use of energy and resources
 - Plasma vs. combustion, POU recycling
 - Adapt to real time operations (idle mode, interface)
- Solutions for increased performance/productivity
 - Increased throughput
 - Reduced maintenance

Hierarchy Of Solutions


Source	Issue	Strategy	Solutions	Benefits
CVD Chamber Clean	PFCs emissions	Optimize	Remote Clean with NF_3	>95% reduction in carbon equivalent emissions, reduced clean time
CVD Emissions	HAPs, PFCs & VOCs emissions	Abate	Combustion with water scrubbing	Reduced fuel and water consumption, energy efficiency
Dielectric Etch	PFCs emisisons	Substitute	Alternative (non-PFC) source gas (C_4F_6)	Better process performance (selectivity)
Dielectric Etch	PFCs emisisons	Abate	Pegasys plasma abatement	>95% reduction in carbon equivalent emissions
Vacuum Pumps	Electrical consumption	Optimize	Integrated point-of-use pumps (iPUP)	Reduced electrical consumption
СМР	Water consumption & contamination	Abate and recycle	Point of use technology	Flexibility, lower cost, water consumption reduction

Issues, strategies and technology solutions currently being addressed by Applied Materials

Environmental Solutions Product Division

Emissions Measurement: Connection Hookup Diagram

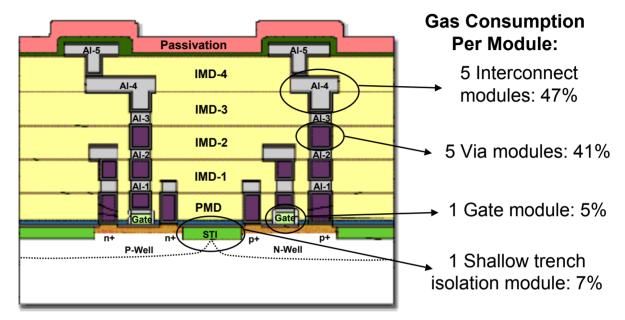
- Measurements at exhaust of vacuum pump (atmospheric pressure), in real time
- Calibrations must be performed on the spot before and after measurement in order to obtain quantitative results
- Additional analytical techniques may be used (off line) to confirm effluents composition (GC-MS, ICP-MS, solid residues analysis...)

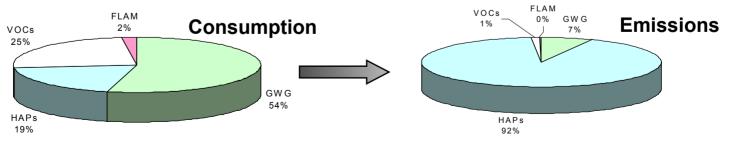
Environmental Solutions Product Division

Emissions - Lotus Notes Database

	o Main - Navigator - Lotus Notes Desktop View Create Window Help	🎊 ET Committees - ET Workgro		missions \ [mission Reports	Latus No	ntos Do	ekton					8 ×
<u> </u>		Ele Edit View Create Action	ons <u>W</u> ir	ndow <u>H</u> elp									
ELC	committees (Join a Group)	Compose Report											
N.	Advanced Process Control	57-1 0 4 Store		Platform	🛊 Chamber 🛛 🖕	¥afer ¢ Q	luant	\$ Date	Dep Process	Etch Process	Clean Process	Authors	
	Computer Modeling		*	Centura	IPS (8062B) 2	:00 Y	'es	04/03/98		Multi-Level Contact Etch		Yelitza Maldonado	
	Defect Reduction	Contractory	*	Centura	IPS (8062B) 2	:00 Y	'es	04/03/98		Bi-Level Contact (1) Etch		Yelitza Maldonado	
	Engineering Standards	Emissions Measurement &	*	Centura	IPS (8062B) 2	:00 Y	'es	04/03/98		Bi-Level Contact (2) Etch		Yelitza Maldonado	
5	<mark>Emissions Measurement & Technologies</mark>	Technologies	*	Centura	IPS (8062B) 2	:00 Y	'es	04/03/98		HSQ Etch		Yelitza Maldonado	
12	ESC	- *Read Me First	*	Centura	IPS (8062B) 2		'es	02/06/98		BCB Etch		Yelitza Maldonado	
1	Green Ceramic Heaters	- Documents	*	Centura	IPS (8062B) 2		'es	02/06/98		BCB Hard Mask Open Etch		Yelitza Maldonado	
		Meetings	*	Centura	IPS (8062B) 2	:00 Y	'es	02/06/98		Post Etch Treatment		Yelitza Maldonado	
A.	New Product Reliability	Members	*	P5000	LH (Universal)	Y	'es		TEOS Oxide		In-situ C2F6/NF3	Mat Waltrip	
397L 0	RF & Plasma Sources	Emission Reports	*	P5000	LH (Universal)	Y	'es		SiH4 Oxide an Nitride	d	In-situ CF4	Mat Waltrip	
9	Water Cleaning	Request for Services	*	P5000	LH (Universal)	Y	'es		TEOS Oxide		In-situ C3F8	Mat Waltrip	
	6% ^{3%}		*	P5000	PECVD 2	:00 Y	'es	06/25/99	Silicon Carbid Blok	e	NF3 Microwave Clean	Sebastien Ra	30
	11% 30%		*	Centura	PECVD 2	:00 Y	'es	06/15/98	SiNx 550 PECVD PROCESS		In Situ RF CF4(1500 sccm)/N2O	Mat Waltrip	
	6%			Producer	PECVD 2	:00 Y	'es	07/08/98	PECVD USG, SiNx, DARC		Remote microwave NF3 clean	Mat Waltrip	
			*	P5000	PECVD 2 Silicon Carbide Low K	:00 Y	'es	08/20/99	Silicon Carbid	e	NF3 Remote Clean	Shree Dhara:	ŝk
	8%			Producer	SACVE Twin 2	inn v	/ac	N9/29/99			NF3 Remote	Sohaction Rs	_
	13% 23%		-									2 Office ^	
PECVD													

□ Transistor/Capacitor
 □ Conductor Etch
 □ SACVD
 □ Low k
 □ Metal/Liner Deposition


S. Raoux 5/8/03 - 12


Modeling Consumption, Emissions (Per Chip Basis)

- Gas consumption and emissions were measured for over 75 processes
- GWGs, HAPs, and VOCs emissions were quantified on a per wafer pass basis
 - A model of consumption and emissions can be built for the whole chip

•

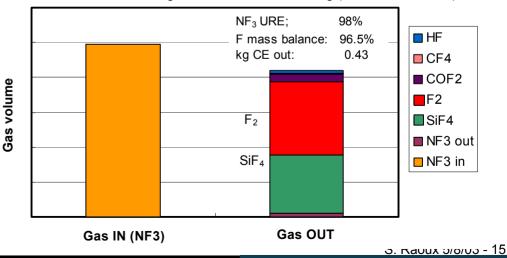
Cross section of a generic logic device with 5 levels of metal

S. Raoux 5/8/03 - 13

APPLIED MATERIALS®

Outline

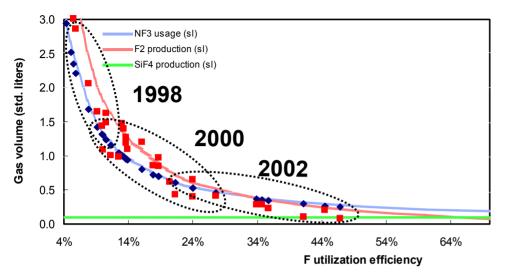
- Environmental impact and industrial ecology in the semiconductor industry
- Applied Materials' Environmental Solutions Product Division
- Progress on CVD chamber cleaning
- Solutions for dielectric etch emissions
- Pumps electrical consumption
- Abatement solutions gap analysis and validation
- Drivers for green manufacturing


Environmental Impact of CVD Chamber Cleans

- Global warming emissions from CVD chamber cleaning were reduced by two orders of magnitude between 1995 and 1998
 - 1995: One clean = 500 miles *
 - 1998: One clean = 2 miles
- Remote Clean[™] technology provides the industry's lowest global warming emissions for CVD chamber cleaning
- However, the clean efficiency is still limited by F--->F₂ recombination and F radical utilization efficiency
 - Recombination leads to high F₂ emissions
 - F₂ emissions must be treated with point of use scrubber
 - Also results in undesirably high NF₃ consumption

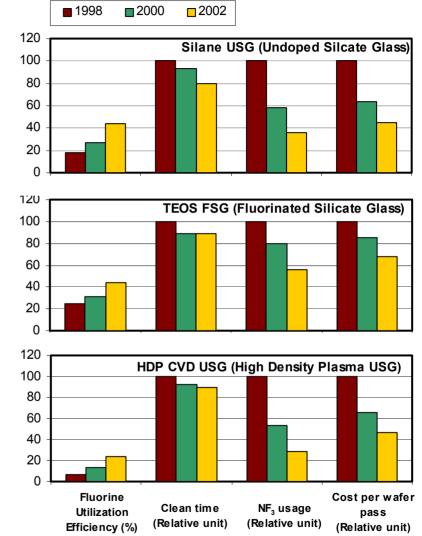
* 1 mile driven with average passenger car = 0.8 lb CE

Global Warming Emissions (100 Years Integrated Time Horizon)



Emissions recorded during SACVD chamber cleaning (HT TEOS Process)

APPLIED MATERIALS®


Situation Analysis on CVD Chamber Cleaning

 Fluorine utilization efficiency used as a metric for optimization

$$F_{Util.Eff.} = \frac{4xSiF_4 + HF + (4xCF_4 + 2xCOF_2 + ...)}{3xNF_3}$$

- Up to 70% reduction in clean gas usage demonstrated through process and hardware improvements
 - Distance between remote plasma source and CVD chamber, materials to transport F atoms
 - Process optimization (multi-step clean concept)

S. Raoux 5/8/03 - 16

Outline

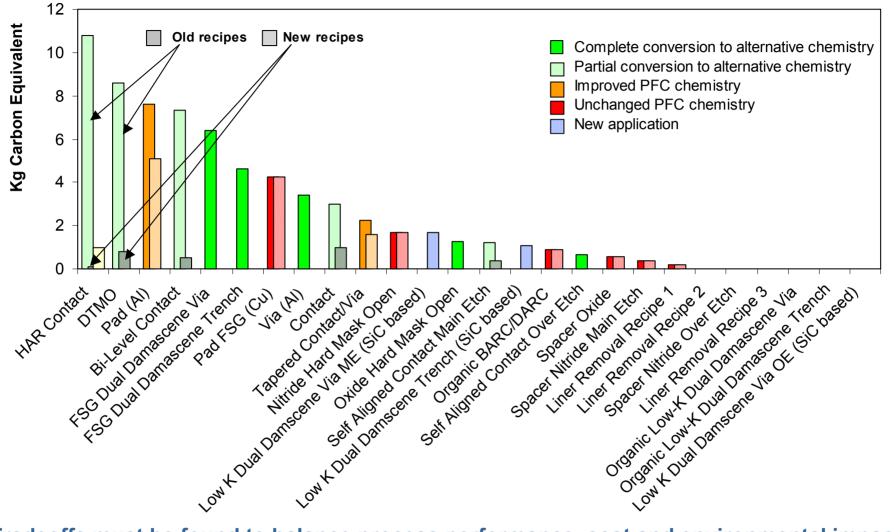
- Environmental impact and industrial ecology in the semiconductor industry
- Applied Materials' Environmental Solutions Product Division
- Progress on CVD chamber cleaning
- Solutions for dielectric etch emissions
- Pumps electrical consumption
- Abatement solutions gap analysis and validation
- Drivers for green manufacturing

C₄F₆ – Alternative PFC Chemistry Implementation / Limitations

	Structure	Boiling Point (Celsius)	Life time (years)	Global Warming Potential (est.)	
C_4F_6	CF2—CF—CF—CF2	6	<0.003	50	

Higher etch selectivity

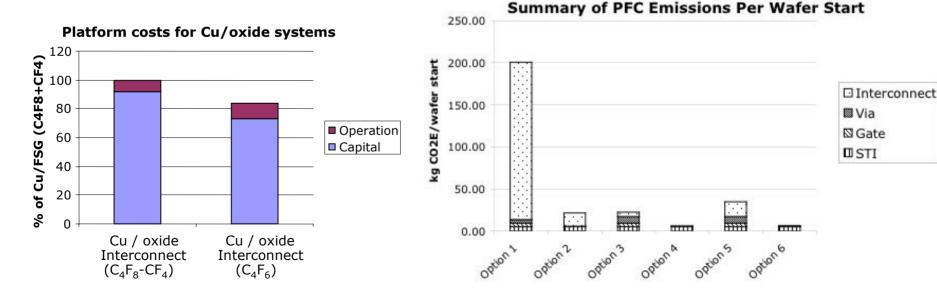
- Pros: Improved selectivity to stop layers, including SiN, SiC (BLoK), TiN
- Limitation: C₄F₆ etch rate limited on carbon-containing materials, nitrides


Chemical incompatibility for applications such as low k etch, hard mask open, spacer etch, organic BARC, DARC

- Improved resist integrity
 - Pros: Minimizes striations, reduces damage to photoresist, preserves CDs, improves profile control (less bowing, tapering), HAR etch
 - Limitation: C₄F₆ performance limited on large open area applications

Limitations for applications such as PAD etch which require high etch rates and high pressure

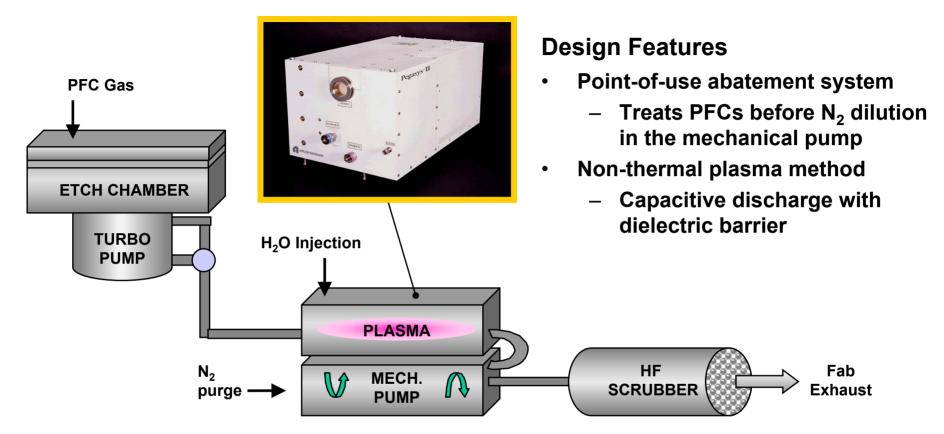
Evolution of PFC Consumption Per Wafer Pass Dielectric Etch - Old vs. New Recipes (300mm)


Tradeoffs must be found to balance process performance, cost and environmental impact

S. Raoux 5/8/03 - 19 Slide #19 APPLIED MATERIALS®

Alternative Chemistries and Abatement for Dielectric Etch

- EnV-S was used to better understand the tradeoffs between alternative PFC chemistry and abatement
 - Despite higher gas costs, C₄F₆ chemistry can be cost effective due to higher throughput
 - Abatement still required to meet aggressive PFC emissions reduction targets


Options	1	2	3	4	5	6
Cu / oxide $(C_4F_8+C_2F_6)$	Х	X				
Cu / oxide (C ₄ F ₆)			X	X		
Cu / Low k					Х	X
Plasma Abatement		X		X		X

S. Raoux 5/8/03 - 20

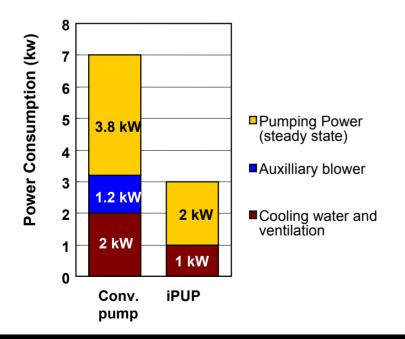
APPLIED MATERIALS[®]

PFC Abatement for Dielectric Etch: Pegasys[™]

Chemistry

- Water injection as sole source of reactant
- Formation of CO₂, CO, COF₂, HF as byproducts of PFC decomposition

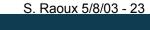
Performance


- > 95% DRE on most demanding 300mm PFC gas flows
- Power management (interface with Applied Materials etchers)

S. Raoux 5/8/03 - 21

Energy Consumption Reduction

- SIA Roadmap for energy consumption reduction
 - 1.2 kWh/cm² of Si in 2000
 - 0.9 kWh/cm² of Si in 2005
 - 0.7 kWh/cm² of Si in 2011
- Applied Materials developed a power measurement protocol and proposed it for inclusion in the SEMI E6 revision

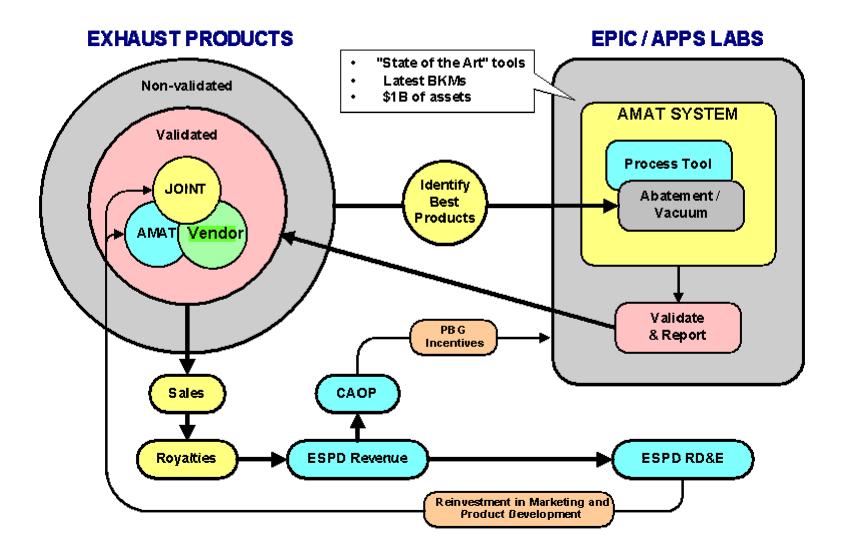


- Energy consumption can be reduced through:
 - Inefficiency identification, measurement
 - Optimization, point-of-use (POU) solutions
 - Idle power reduction (non value-added energy)
- Use of next generation vacuum pumps could save up to:
 - 200,000 kWh per system per year (6 pumps)
 - 150,000 kg CE per system per year

Outline

- Environmental impact and industrial ecology in the semiconductor industry
- Applied Materials' Environmental Solutions Product Division
- Progress on CVD chamber cleaning
- Solutions for dielectric etch emissions
- Pumps electrical consumption
- Abatement solutions gap analysis and validation
- Drivers for green manufacturing

APPLIED MATERIALS®


Abatement Solutions Gap Analysis

G	ood treat	ment solution 📃 Req	uire improv	/ements	Inadequate
Key Product Unit	Process	Emission Byproducts	Key Product Unit	Process	Emission Byproducts
	USG	SIF4, F2, HF, COF2, C0, NF3, C02,		ISSG	H2, O2,
	SiNx	TEOS, C2H5OH, CH4 SiF4, F2, HF, NF3, N2O, SiH4, NH3	RTP	EISSG RTN	N2O, H2 H2, NH3
PECVD	FSG	SIF4, F2, HF, COF2, C0, NF3, C02, TEOS, C2H50H, CH4	Epi	Standard Epi SiGe Blanket	HCI, DCS, SiH4, SiCl4, Cl2, H2, GeH4
	PSG	SIF4, F2, HF, COF2, CO, NF3, CO2,	High-k	ТаОх	SIF4, F2, HF, COF2, NF3, CF4, CO2
		TEOS, TEPO, C2H5OH, CH4	rigii-k	HfOx	DEA, NH3, CO, C2H4, Cl2
	BD	SIF4, F2, HF, COF2, NH3, NF3, CF4,		W-CVD	SIF4, F2, HF, NF3, SIH4, WF6, B2H6
Low-k		CO2, TMS, CH4		TiCI4/TiN	TiCI4, NH3, CI2, HCI, NH4CI
	BLOk	SIF4, F2, HF, COF2, NH3, NF3, CF4,	MCVD	TiCl4/Ti	TiCl4, Cl2, HCl
		CO2, TMS, CH4		TDMAT/TIN	TDMAT, CH4, NH3, DMA
	USG	SiF4, F2, HF, NF3, SiH4		TDMAT/TiSiN	TDMAT, CH4, NH3, DMA, SiH4, H2
HDP-CVD	FSG	SIF4, F2, HF, NF3, SIH4		Dielectric Etch	COF2, SiF4, C4F8, CF4, CHF3,
	PSG	SIF4, F2, HF, NF3, SIH4, PH3			C2F6, C4F6, C2F4
	BPSG	SIF4, F2, HF, COF2, CO, NF3, CO2, TEOS, TEPO, TEB, C2H5OH, HCOOH,		Metal Etch	BCI3, CI2, HCI, F2, AICI3, CF4, CHF3, SF6
SACVD		CH4	Etch	Silicon Etch	SiF4, C4F8, CF4, CHF3, C2F6, Cl2,
0,1012	BSG	SIF4, F2, HF, COF2, CO, NF3, CO2,			H2, C2F4, SF6
		ТЕОЅ, ТЕВ, С2Н5ОН, НСООН, СН4		Low-k Etch	COF2, F2, HF, CO, SiF4, C4F6, CF4,
	SinGen	SiF4, F2, HF, NF3, SiH4, NH3		Photomask	CHF3, C2F4, C2F6 COF2, HF, CO, SiF4, CF4, CO2, Cl2,
	PolyGen	SiF4, F2, HF, NF3, SiH4, PH3, N20		Etch	SO2, SF6, C2F6
				Quantum	AsH3, BF3, PH3, SiF4, CO, CO2
LPCVD	OxyGen	SiF4, F2, HF, NF3, SiH4, N2O	Implant	Swift	AsH3, BF3, PH3, SiF4, CO, CO2
	WSix	SIF4, F2, HF, NF3, SIH4, WF6, DCS,		Copper	Cu++, copper salts, organics
1		HCI, CI2, SICI4	CMP	Oxide	HF, NH4OH, IPA

- 30% of the applications require improvement of the abatement systems
- Some abatement applications currently do not have acceptable performance

S. Raoux 5/8/03 - 24
APPLIED MATERIALS®

Simplified Business Model

S. Raoux 5/8/03 - 25

Environmental Solutions Product Division

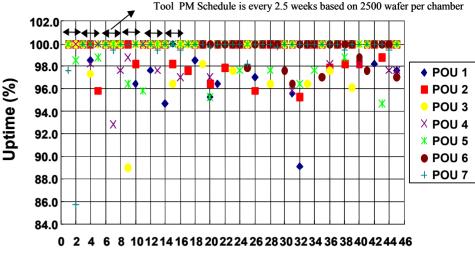
APPLIED MATERIALS*

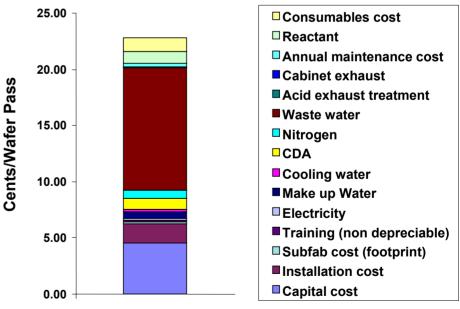
Abatement Validation Report Contents

- Summary of Findings
 - Purpose, value, key data, conclusions
- Gaseous Emission Analysis
 - Deposition process
 - Clean/seasoning process
 - Mixed process
 - Abatement recipe and process window
- Liquid & Solid Byproducts
 - Liquid byproducts analysis
 - Solid byproducts analysis
 - Phase change data (condensation curve)
 - Material capability
- Process Transparency & Reliability
 - Particle data, uniformity
 - Abatement uptime information

- EnV-S Analysis
 - Extended CoO analysis
 - EHS indicator
 - Performance indicator
 - TLV, IDLH
- Analytical Methodology and Calibration
 - QMS
 - FTIR
 - Calibration curve
 - Dilution factor calculation
 - PFC calculation
 - Breakdown efficiency and F closure
- Appendix
 - Installation procedure
 - Maintenance schedule and procedure
 - Safety and regulatory information

Aligned to industry standard: "Equipment Environmental Characterization Guidelines - Rev 3.0"


Environmental Solutions Product Division


Example POU Abatement Validation Results

- Point of use abatement systems are rigorously characterized for:
 - destruction removal efficiencies (DREs)
 - environmental cost of ownership
 - reliability

Emissi	ion	POU	POU	
Compon	ent /	In	out	DRE
Catego	ory	(g/wafer)	(g/wafer)	
	F ₂	0.296	0.013	95.50%
HAPs	HF	0.4	< 0.012	> 96.88%
	SiF_4	5.927	< 0.013	> 99.78%
PFCs	NF ₃	0.095	0.022	77.05%
FT CS	CF_4	0.179	0.026	85.60%
CO	CO	0.218	0.32	-
GWG	CH_4	0.005	0.052	-
GWG	N ₂ O	10.728	2.624	75.54%
NOx	NO	-	0.197	-
Flammable	SiH ₄	0.065	< 0.002	> 97.45%
	B_2H_6	0.02	<0.001	> 92.82%

Work Week

POU Abatement Costs

5. Raoux 5/8/03 - 21

Drivers of Green Manufacturing Technologies

٠

The development of environmentallyfriendly technologies must take into account:

- Cost of ownership
 - Capital cost
 - Treatment cost
 - Operation cost
- Process performance
 - Process repeatability
 - Tool productivity
 - Utilization / abatement efficiency
- EHS impact
 - Human health impact
 - Environmental impact
 - Regulatory compliance

- What are the drivers for change?
 - Moore's law
 - Cost reduction (\$/bit)
 - Performance improvement (bit/cm²)
 - Awareness
 - Public, government, industry
 - Investors, shareholders
 - Local vs. global environmental impact
 - Sustainable development

S. Raoux 5/8/03 - 28

Acknowledgements

- Mohamed Alaoui
- Dustin Ho
- Lynn Hunsaker
- Nikhil Krishnan
- Peter Porshnev
- Rafika Smati
- Deborah Swarts
- Mike Woolston
- Applied Materials Product Business Groups

S. Raoux 5/8/03 - 29