van der Waals and Electrostatic Forces in Particle Adhesion

Principal Investigator: Steve Beaudoin¹ Graduate Student: Sean Eichenlaub²

¹Purdue University College of Chemical Engineering

²Arizona State University Department of Chemical and Materials Engineering

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Teleseminar November 13, 2003

Importance of Adhesion In the Semiconductor Industry

Chemical Mechanical Planarization

Post-CMP Cleaning

Forces In Particle Adhesion

Comparison of Adhesion Forces

				Order of Magnitude Change in		
				Interaction due to:		
	Magnitude	Range				
Interaction Force	(kJ/mol)	(nm)	Presence	Geometry	Roughness	Deformation
Chemical Bonds	1001000	0.10.2	Ocasionally	12	12	13
			Always			
van der Waals	10100	0.4>100	Present	13	12	12
Electrostatic (non			In Air or			
double layer)	0.110	0.420	Vacuum	01	01	01
Electrostatic			In Electrolyte			
(double layer)	120	2100	Solutions	02	02	02
			Between			
Hydrophobic	10100	0.4-75	Hydrophobic	13	12	12

How Factors Affect Force

Adhesion Forces Considered

van der Waals

Electrostatic Double Layer

Current Adhesion Models

van der Waals

Electrostatic

Importance of More Realistic Models Distribution of Adhesion Forces

Predicted Adhesion Force(s)

Effect on Removal Model

⁺ G. M. Burdick, N. S. Berman, and S. P. Beaudoin, J. Nanoparticle Res. 3 (2001) 455

Importance of More Realistic Models II Relative Contribution of Each Force

Experimental Approach Overview

K. Cooper, A. Gupta, and S. Beaudoin, J. Colloid and Interface Sci. 234 (2001) 284.

Experimental Measurements

Particles Mounted on AFM Cantilevers

Al₂O₃ Particle

PSL Particle

etro 15.0V 20. mm x4 54 SE(U) 9999 15.0

AFM Force Curve

Distribution of Interactions ♥

van der Waals Adhesion Model

van der Waals Adhesion Model Determination of Hamaker Constants, A₁₂₃

Provides

- Further validation of the vdW adhesion model
- · An intrinsic measure of the forces important in thin film adhesion

Hamaker Constants

Comparison of Experimental and Literature Hamaker Constants

- Good agreement for surfaces with <u>small</u> asperities: Ag, Cu, SiO₂
- Poorer agreement for surfaces with <u>large</u> asperities: Parylene, PTFE, TiN

(Roughness generated with hemispherical asperities)

Surface Roughness Models

Limitations of vdW Model Hemispherical Asperity Surface Roughness

Measured parameters (constraints)

- Heights of asperities, h
- Standard deviation of asperity height
- Fractional surface coverage by the asperities

Hemispherical asperities placed on surface until constraints are met

10 nm 700 nm 100 nm

AFM scan of actual Cu surface

Hemispherical asperities model of Cu surface

Limitations of vdW Model II Hemispherical Asperity Restrictions

Measured parameters

- Distribution of asperity heights must be normal
- Parameters don't vary with AFM scan size
- Individual asperities present

AFM Scan of Aluminum

Parameters determined at various scan sizes

New Surface Roughness Models

Provides

- Ability to generate rough complex surfaces
- More accurate surface models
- More accurate adhesion model predictions

Hemispherical Asperity Model Smooth Copper Surface

Direct Surface Map Section of AFM Scan

AFM Scan

Model Surfaces

Histogram Comparing Predicted Adhesion Forces

Hemispherical Asperity Model Rough Copper Surface

AFM Scan

Model Surface

Histogram Comparing Predicted Adhesion Forces

Model Surfaces Generated with Fractals

Model Surfaces Generated with Fourier Transform

Fourier transform equation:

$$f(k) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi f x} dx$$

Fourier transform of surface profile

$$f(x) = \sum_{k=0}^{n-1} F_k e^{i2\pi \frac{kx}{n}}$$
$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f(x_j) e^{i2\pi kx_j/n}$$

Addition of random phase angle

Histogram Comparing Predicted Adhesion Forces

20/34

Improvement in vdW Model Hamaker Constants with New Surface Roughness Models

Limitations on Hemispherical Asperity Model

To use Hemispherical Asperity Model

- Fractional coverage must be less than 70 percent
- Asperity Height must be less than <u>10 nm</u>
- Larger fractional coverages and asperity heights result in poor predictions

Electrostatic Interactions

Electrostatic Adhesion Model

Calculation of Electrostatic Forces in Adhesion Model

1.) Find ψ , $q \rho$

Reduce equation to a system of algebraic equations

$$\nabla^2 \psi = \kappa^2 \psi$$
 $\psi = \psi_0$ on Γ_1 $q_0 = \partial u_0 / \partial n$ on Γ_2

Weighted
$$\psi = \alpha_1 \phi_1 + \alpha_2 \phi_2 + \dots + q - q_0 \neq 0$$
 on Γ_1
Residuals $w = \beta_1 \psi_1 + \beta_2 \psi_2 + \dots + \psi - \psi_0 \neq 0$ on Γ_2

$$\psi_j = \int \psi^* q_0 d\Gamma - \int q^* \psi_0 d\Gamma \qquad \psi^* = \frac{1}{4\pi r} e^{-\kappa r}$$

$$c_j \psi_{0j} = \int \psi^* q_0 d\Gamma - \int q^* \psi_0 d\Gamma \qquad q^* = \nabla \psi^* \cdot \mathbf{n}_{\alpha}$$

Apply to Discretized Boundary

$$\boldsymbol{\psi}_{j} = \sum_{i=1}^{N} \left(\int_{\underline{\Gamma}_{i}} \boldsymbol{\psi}^{*} d\Gamma_{i} \right) \boldsymbol{q}_{0i} - \sum_{i=1}^{N} \left(\int_{\underline{\Gamma}_{i}} \boldsymbol{q}^{*} \right) \boldsymbol{\psi}_{0i} \quad \frac{1}{2} \boldsymbol{\psi}_{0j} = \sum_{i=1}^{N} \left(\int_{\underline{\Gamma}_{i}} \boldsymbol{\psi}^{*} d\Gamma_{i} \right) \boldsymbol{q}_{0i} - \sum_{i=1}^{N} \left(\int_{\underline{\Gamma}_{i}} \boldsymbol{q}^{*} \right) \boldsymbol{\psi}_{0i}$$

Solve with quadrature

System of linear algebraic equations, solve for ψ or q

2.) Calculate force

Solve for
$$\rho$$

$$\frac{F}{Area} = -\frac{\sigma^2}{2\varepsilon_0\varepsilon_r} + kT\sum_i (c_i^*(0) - c_{io}^*)$$

Integrate over surfaces
$$F = \sum \left[-\frac{\sigma^2}{2\varepsilon_0 \varepsilon_r} + kT \sum_i (c_i^*(0) - c_{io}^*) * Area \right]$$

Surface Potentials

Zeta Potential as a Function of pH and Ionic Strength

Particle Geometry

SEM Characterization

Photomodeler_® Pro Reconstruction

PSL Interactions with SiO₂

pH (Constant Ionic Strength 0.01 M)

- Electrostatic interactions do not have a significant effect at different pHs
- Large contact area between sphere and wafer dominated by vdW

PSL Interactions with SiO₂

- Electrostatic interactions do not have a significant effect at different ionic strengths
- Large contact area between sphere and wafer dominated by vdW

Alumina Interactions with SiO₂

pH (Constant Ionic Strength 0.01 M)

- Electrostatic interactions do affect the adhesion force, which varies with pH
- Large area between particle and wafer out of contact
- Small contact area

Alumina Interactions with SiO₂

Ionic Strength (M) (Constant pH=2)

- Electrostatic interactions do affect the adhesion force, which varies with ionic strength
- Large area between particle and wafer out of contact
- Small contact area

Conclusions

Hamaker Constants

- Measured Hamaker constants for:
 - SiO₂, Cu, Ag, TiN, PTFE, and Parylene,
- Method of measuring Hamaker constants for new materials
- Further validation of vdW adhesion model
- Limitations of surface roughness models

Surface Roughness Models

- Examined effects of model surface generated with fractals, Fourier transforms and hemispherical asperities
- Hemispherical asperity models
 - Parameters cannot vary with AFM scan size
 - Accurate for surfaces with small roughness
- Fractal surfaces
 - Difficult to generate and cannot be generated for all surfaces
- Surfaces generated with Fourier transforms
 - Accurate for all surfaces
- Validation of roughness models through comparisons with AFM measurements

Electrostatic Double Layer Interactions

- Small for particles with ideal geometry, vdW dominate
- Contribute to adhesion force for asymmetrical particles
- Modeled with boundary element method
- Validated model through comparison with AFM measurements

Future Work

Theory

- Particle geometry characterization
- Examine electrostatic interactions for the particle not in contact
- Cohesive failure of the particle or surface
- Investigation of other forces
 - Isolate force with adhesion model

Applied

- Tailor systems to control adhesion force
 - Strengthen adhesion force when desired
 - Weaken adhesion force when particles must be cleaned from surface
- Use model to examine other systems of interest in other industries
- Combine all interactions and removal model in software package

Dialog	×	🚰 Untitled - adhesionvisual	
Input Parameters		<u>Eile Edit ⊻iew H</u> elp	
Hamaker Constant 3.4 for System	x 10^ -20		
Bulk Modulus of 3.2 Softer Material	x 10^ 9		
Lenard Jones Seperation Distance (.4 (nm)			
Particle Radius (nm) 350	_		
Applied Load (nN) 200	_		
Surface Morphology			
Particle	Surface		
Average Asperity (nm) 3.7	Average Asperity (nm) 2.9		
STD of Average 2.4	STD of Average 1.5 Asperity (nm)		
Fractional Coverage 35 (%)	Fractional Coverage [24 (%)		
OK	Cancel		
		Ready	

Acknowledgments

Advisor and Committee

• Steve Beaudoin, Terry Alford, Veronica Burrows, Michael Kozicki, Greg Raupp

Experimental Contributions

• Carlota Holland, Harriet Gu, Carly Chan, and Heather Stanfield

Funding provided by

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- NSF Career Grant
- NSF Graduate Research Traineeship

Technical support provided by

- Fred Pena
- Center for Solid State Science, Arizona State University
- Center for Solid State Electronics Research, Arizona State University
- Interactive Nano-visualization in Science and Engineering Education, Arizona State University