Technology Choices in the Presence of Uncertainties

An Update on the Economic and Environmental Issues Influencing the Choice of NF_3 vs. F_2 as a Chamber Cleaning Gas

Yue Chen and Gregory J. McRae

Department of Chemical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 YueChen@mit.edu, McRae@mit.edu

NSF/SRC Engineering Research Center

Environmentally Benign Semiconductor Manufacturing Tele-seminar 6th November 2003

Some on Perspectives Business Optimization²

Conventional

Minimize the <u>cost</u> subject to meeting technical and environmental regulations

Better (but rarer) Formulation

Maximize <u>profit</u> subject to meeting technical and environmental constraints

Even Better Formulation

Maximize <u>corporate</u> performance

What are the implications of viewing environment, safety,... as objectives rather than as constraints on operations?

Why are Technology Choices Complex?

Example: Choosing a chamber cleaning gas (NF₃ vs. F_2 ?)

Decision Criteria	NF ₃	F ₂	Reference
Fluorine usage rate at the same etch rate (mole/min)	0.15	0.17	This work
Cost/mole of Fluorine	\$6	\$0.8	[1]
LCA Global Warming Effect (kg CO ₂ equivalent/kg)	3.3	2.4	This work
Toxicity LC ₅₀ (ppm)	6700	180	[2,3]

The Problem: How to choose between technologies - When there are conflicting decision criteria - Many uncertainties

The Essence of the "Decision Problem"

- How do we value alternatives? (cost, profit, first-to-market,...)
- 2. How much information do we need in order to get the sign right?
- 3. Where to allocate resources (modeling, experiments,...) to reduce risk in decision outcomes?

ESH – Environment, Safety and Health

COO – Cost of Ownership

They must be seamlessly integrated for effective decision making

5

Overlapping Data Requirements

Cost of Ownership Equipment Data Original Cost per System Defect Density Fab Throughput Data Throughput at Capacity per System Volume Requirement Redo Rate Fab Process Data Faulty Probability **Clustering Parameter** Administrative Rates Salary Rates Labor Rates Space Costs **Production Specific Data** Personnel per System Maintenance Cost Prices of Gases & Chemicals Prices of Waste Disposal

Model Mass and Energy Flows Special Gases & Chemicals Waste Disposal Plant Exhaust **Bulk Gases & Chemicals** Electricity Water Natural Gas **Equipment Data Equipment Yield** Fab Throughput Data Down Time Fab Process Data Wafer Size Wafer Coverage

Process

Physical & Chemical Properties

Environmental

Evaluation

Boiling Point Flammability Vapor Pressure Density Waster Solubility **Environmental Properties** Water Condiment Partition Factor Atmospheric Lifetime Aerobic Degradation Half Life **Health Properties** LD 50 (rat) LD 50 (rabbit) Milk Biotransfer Factor Weighting Factors Weight for Global Warming Effect Weight for Human Toxicity

There are many areas of overlap

Chamber Cleaning with NF₃/F₂

POU generation creates explosive H₂

Comparison criteria: cleaning performance, environmental impacts, cost

- Fuel Usage Similar
- Water Usage 548 gallon/yr for NF₃, 566 gallon/yr for F₂
 Insignificant compared to 1 million gallon/day

Including Upstream Processes

- How much information do we need to know in order to get the sign right?
- How do we decide where to allocate resources for more analyses, experiments and/or better data?

	Process Model Hierarchy	Distribution of Flows	Resources Needed
1	Simple stoichiometric yield		1
2	Lumped kinetics (3 reactions)		10
3	Detailed kinetics (60 reactions)		100
4	Model based experiments		1000

Knowledge Availability along Design Process

- At the early design stage, little information is available.
- There is large uncertainty associated with available knowledge.
- Time and resources are limited for the designer.
- Where should time and resources be allocated for the data collection effort?

Start Comparison with Little Information

- With little information of the process, direct comparison of the criteria is impossible.
- Currently available knowledge: 2NH₃ + 3F₂ → 2NF₃ + 3H₂

Hierarchical Modeling – First Process Modeling Level

Starting from estimations of cleaning gases and energy consumptions

Cleaning Gases
$$N_{NF_3} = \frac{4N_{SiO_2}}{3F\%_{NF_3}}, N_{F_2} = \frac{2N_{SiO_2}}{F\%_{F_2}}$$

Energy $E_{NF_3} = \frac{N_{SiO_2}E_{b_NF_3}}{F\%_{NF_3}\xi_{E_NF_3}} + tP_{plasma}, E_{F_2} = \frac{N_{SiO_2}E_{b_F_2}}{F\%_{F_2}\xi_{E_NF_3}} + tP_{plasma}$

where for
$$NF_3$$
 cleaning
for F_2 cleaning

$$F\%_{NF_{3}} = (4 \cdot N_{SiF_{4}} + N_{HF}) / (3 \cdot N_{NF_{3}}) \cdot 100\%$$

$$F\%_{F_{2}} = (4 \cdot N_{SiF_{4}} + N_{HF}) / (2 \cdot N_{F_{2}}) \cdot 100\%$$

• Little process specific information is known for F%, ξ_E , and t What to do

Use probability distribution functions to describe them

Bayes Theorem – Learning from Data/Models

T. Bayes (1702-1761)

 $p(\theta \mid y) = \frac{p(y \mid \theta) p(\theta)}{p(y)}$

ERC Tele-seminar 6th November 2003

15

- 1. Can use prior knowledge and physical constraints in the analysis
- 2. Provides a formal framework for combining measurements of different quality
- 3. Gives the pdf's of the solution
- 4. New algorithms (MCMC) can solve non-linear problems
- 5. Broad applications including decision analysis

... Both Bayesian and Frequentist views are useful in practice

Assumed Distributions of Efficiencies and Time

- Fluorine Utilization Efficiency
 - F% ~ uniform(10⁻⁵, 0.6)

$$f(F\%) = \frac{1}{0.6 - 10^{-5}}$$

- Energy Utilization Efficiency
 - $\xi_{\rm E} \sim \text{uniform}(10^{-10}, 0.6)$

$$f(\xi_{E}) = \frac{1}{0.6 - 10^{-10}}$$

- Cleaning Time
 - t (s) ~ uniform(6E⁻⁴, 1200)

$$f(t) = \frac{1}{1200 - 6 \times 10^{-4}}$$

- LCA includes the upstream gas production and downstream disposal treatment
- Advantages of probability distributions:
 - Quantitative
 - Present the uncertainty of the information
 - Can be refined when further knowledge is available

MIT Environmental Evaluation Model

Environmental Impacts from LCA MI

Comparison of the global warming potential of the two processes

Where Shall We Go Next?

- Uncertainty can come from
 - Process model
 - Upstream and downstream data
 - LCA model/data

Important Parameters of Affecting Relative GWP

Table I	
---------	--

Parameter	Rank Correlation Coefficient
F% _{NF3}	-0.64
F% _{F2}	0.46
Cleaning Time t (s)	-0.28
للج E_NF3	-0.20
چE_F2	0.12
NF3 Yield in NF3 Production from NH3 and HF	-0.11
H ₂ S Emission from Oil-Fired Power Plant (kg/ kW-h Energy)	-0.083
Electricity Used in Diesel Fuel Production (MJ/kg)	0.078
GWP of $C_2H_3CI_3$ (kg CO_2 equivalent/kg)	0.067
GWP of CH ₂ Cl ₂ (kg CO ₂ equivalent/kg)	0.061

Process model need to be refined!

Hierarchical Modeling – Second Process Modeling Level

- Lumped Kinetics and PSTR Model
- Key Assumptions
 - Free electrons are generated mainly by ionization Ar+e --> Ar++2e
 - Electron loss and production are linear to electron concentration
 - Diffusion of electrons dominates the transport of electrons.

$$\begin{split} n_{F,NF_{3}} &= \frac{\beta_{3}\tau n_{NF_{3},in}}{1+\beta_{3}\tau} + \frac{\beta_{2}\beta_{3}\tau^{2}n_{NF_{3},in}}{(1+\beta_{2}\tau)(1+\beta_{3}\tau)} + \frac{\beta_{1}\beta_{2}\beta_{3}\tau^{3}n_{NF_{3},in}}{(1+\beta_{1}\tau)(1+\beta_{2}\tau)(1+\beta_{3}\tau)} \\ n_{F,F_{2}} &= \frac{\beta_{F_{2}}\tau n_{F_{2},in}}{1+\beta_{F_{2}}\tau} \\ \beta_{i} &\equiv k_{i}n_{e} \end{split}$$

ERC Tele-seminar 6th November 2003

MIT Chemical Engineering

22

Etch Rate – Falls into industrial experience

Important Parameters that Affect Etch Rate	Rank Correlation Coefficient
Film surface temperature (K)	0.545
Activation energy in the SiO_2 etch rate equation (J)	-0.403
Power of the electron temperature of NF ₃ disassociation reaction in	
plasma	0.416
Chamber temperature (K)	-0.371
Electron temperature (eV)	0.243

Table II

Fluorine Utilization Efficiency Results

• The F₂ cleaning has higher fluorine utilization efficiency

 Narrower distribution compared to the first modeling level (F% ~ uniform(10⁻⁵, 0.6))

LCA Results at Second Process Level

• Narrower distributions of the impacts

ERC Tele-seminar 6th November 2003

First Process Modeling Level

- The increase of modeling detail decreases the uncertainty of the outputs.
- Even though there is much uncertainty in the inputs, by directly addressing the uncertainty and using relative ratio, the two processes can be clearly differentiated.

Second Process Modeling Level

 Energy used outside the fab consists half of the total energy consumption for the NF₃ cleaning process.

Reducing the power needed for the plasma generator

╋

_

Producing NF₃ and other upstream materials more efficiently

Less impacts from energy generation, which is a major impact source!

Importance of Considering Multi-Boundaries

Table III	
Important Parameter of Relative GWP at Second Process Modeling Level	Rank Correlation Coefficient
Power Used in Plasma Generator (W)	0.69
Power to the Electron Temperature in NF ₃ Disassociation Reaction	-0.37
NF ₃ Yield in NF ₃ Production from NH ₃ and HF	-0.33
Energy Used in F ₂ Production (J)	0.21
Power to the Electron Temperature in NF ₂ Disassociation Reaction	-0.19
Electron Temperature in the Plasma Source (eV)	-0.13
Temperature of Surface to be Cleaned (K)	-0.087
NH ₃ Flow Rate in NF ₃ Production (sccm)	-0.085
Pre-exponential Term of F ₂ disassociation Reaction in the Plasma	-0.066
Stir Rate in NF ₃ Production (W/m ³)	0.058

Framework of Decision-Making Process

SEMI Cost of Ownership (CoO) Model

- Key Assumptions
 - No yield loss for both processes
 - Fixed costs of chamber and plasma source are the same
 - POU fluorine generator depreciate linearly in 5 years
 - Cleanings are done 200,000 times per year
 - Added value due to lower down time of chamber system was not considered

Distributions of Parameters in COO

 Wide triangle distributions were used to describe parameters

$$\begin{cases} f(x) = \frac{2[x - (1 - \alpha)m]}{2\alpha^2 m^2} & \text{if}(1 - \alpha)m < x < m \\ f(x) = \frac{2[(1 + \alpha)m - x]}{2\alpha^2 m^2} & \text{if} m < x < (1 + \alpha)m \end{cases}$$

x – random variable;

 α – the percentage of change in the nominal value. α ~ uniform(10%, 90%);

m - nominal value of the variable.

• Example:

Assume nominal value of NF3 price is \$0.26/g. Then when α = 50%, the price of the NF3 gas can change between \$0.13/g and \$0.39/g.

Distributions of Parameters of the F₂ Process

 Variables of the F₂ process have larger upper limits to incorporate its less certainty.

$$\begin{cases} f(x) = \frac{2[x - (1 - \alpha)m]}{\alpha m[\beta m - (1 - \alpha)m]} & \text{if } (1 - \alpha)m < x < m \\ f(x) = \frac{2[(1 + \alpha)m - x]}{(\beta m - m)[\beta m - (1 - \alpha)m]} & \text{if } m < x < \beta m \end{cases}$$

 β – Percentage of increase in the nominal value. β ~ uniform(200%, 1800%).

- Miscellaneous cost of training per system ranges from \$3200 to \$400,000 with the nominal value of \$4000.
- By setting the coefficients α and β to be random variables, the uncertainty introduced by how these variables are modeled can be studied.

Results of COO Analysis

 There is less than 5% that F₂ cleaning will be more costly than NF₃ cleaning

• Where do the large uncertainty of the NF₃ COO come from?

Identifying Important Parameters of NF₃ COO

Parameter	Rank Correlation Coefficient
Power to the Electron Temperature in NF ₃ Disassociation Reaction	-0.61
Price of NF3 Gas (\$/g)	0.34
Temperature of Surface to be Cleaned (K)	-0.27
Power to the Electron Temperature in NF ₂ Disassociation Reaction	-0.24
Activation Energy of Etch Reaction (J)	0.23
Chamber Temperature (K)	0.20
Electron Temperature in the Plasma Source (eV)	-0.19
Pre-Exponential Term of Etch Reaction	-0.13
Power to the Electron Temperature in NF ₂ Disassociation Reaction	-0.12
Price of Argon Gas (\$/g)	0.092

- Most of the parameters are still from the process model!
- These are the same parameters that affect environmental impacts.

Overlapping Data Requirements

Equipment Data Original Cost per System Defect Density Fab Throughput Data Throughput at Capacity per System Volume Requirement Redo Rate Fab Process Data Faulty Probability **Clustering Parameter** Administrative Rates Salary Rates Labor Rates Space Costs **Production Specific Data** Personnel per System Maintenance Cost Prices of Gases & Chemicals Prices of Waste Disposal

Model Mass and Energy Flows Special Gases & Chemicals Waste Disposal Plant Exhaust **Bulk Gases & Chemicals** Electricity Water Natural Gas **Equipment Data Equipment Yield** Fab Throughput Data Down Time Fab Process Data Wafer Size Wafer Coverage

Process

Physical & Chemical Properties

Environmental

Evaluation

Boiling Point Flammability Vapor Pressure Density Waster Solubility **Environmental Properties** Water Condiment Partition Factor **Atmospheric Lifetime** Aerobic Degradation Half Life **Health Properties** LD 50 (rat) LD 50 (rabbit) Milk Biotransfer Factor Weighting Factors Weight for Global Warming Effect Weight for Human Toxicity

There are many areas of overlap

Conclusions and Key Points

- The integration of process models, COO, and environmental evaluations is critical and feasible.
- Large uncertainty in the inputs does not necessarily lead to low confidence in decisions.
- Hierarchical modeling in combination with uncertainty analysis are efficient way to support the decision making and resource allocation process.
- The next step is to develop an integrated software environment

UNCERTAINTY \neq **IGNORANCE**

- Laura Losey, David Bouldin, Mike Kasner, Tim Yeakley, Larry Novak, Daren Dance, Tina Gilliland – Texas Instruments
- Alejandro Cano-Ruiz and Pauline Ho Reaction
 Design
- Joe Van Gompel **BOC Edwards**
- Karen Gleason, Herb Sawin and Joel Clark MIT
- Holly Ho SEMATECH International
- Engineering Research Center for Environmentally Benign Semiconductor Manufacturing – NSF/SRC.

Yue (Nina) Chen

Department of Chemical Engineering, 66-060 Massachusetts Institute of Technology Cambridge, MA 2139 YueChen@mit.edu (617) 253-5973

Gregory J. McRae

Department of Chemical Engineering, 66-362 Massachusetts Institute of Technology Cambridge, MA 2139 McRae@mit.edu (617) 253-6564

End of Presentation