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Some on Perspectives Business Optimization
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Conventional
Minimize the cost subject to meeting 
technical and environmental regulations

Better (but rarer) Formulation
Maximize profit subject to meeting 
technical and environmental constraints

Even Better Formulation
Maximize corporate performance

What are the implications of viewing What are the implications of viewing 
environment, safety,…  as objectives environment, safety,…  as objectives 
rather than as constraints on operations?rather than as constraints on operations?
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Why are Technology Choices Complex?

Example: Choosing a chamber cleaning gas (NF3 vs. F2?)

0.15

NF3

This work0.17Fluorine usage rate at the 
same etch rate (mole/min) 

ReferenceF2Decision Criteria

6700

3.3

$6

0.15

NF3

This work0.17Fluorine usage rate at the 
same etch rate (mole/min) 

[2,3]180Toxicity LC50 (ppm) 

This work2.4LCA Global Warming Effect 
(kg CO2 equivalent/kg) 

[1]$0.8 Cost/mole of Fluorine 

ReferenceF2Decision Criteria

The Problem: How to choose between technologies 
- When there are conflicting decision criteria
- Many uncertainties
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The Essence of the “Decision Problem” 

1. How do we value alternatives? 
(cost, profit, first-to-market,…)

2. How much information do we need 
in order to get the sign right? 

3. Where to allocate resources 
(modeling, experiments,…) to 
reduce risk in decision outcomes? 
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Key Message 

They must be seamlessly integrated 
for effective decision making

ESH – Environment, Safety and Health

COO – Cost of Ownership
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Overlapping Data Requirements 

Mass and Energy 
Flows

Special Gases & 
Chemicals

Waste Disposal
Plant Exhaust

Bulk Gases &Chemicals
Electricity

Water
Natural Gas

Equipment Data
Equipment Yield

Fab Throughput Data
Down Time

Fab Process Data
Wafer Size

Wafer Coverage

Environmental 
Evaluation

Cost of 
Ownership

Equipment Data
Original Cost per System

Defect Density
Fab Throughput Data

Throughput at Capacity per System
Volume Requirement

Redo Rate
Fab Process Data
Faulty Probability

Clustering Parameter
Administrative Rates

Salary Rates
Labor Rates
Space Costs

Production Specific Data
Personnel per System

Maintenance Cost
Prices of Gases & Chemicals

Prices of Waste Disposal

Physical & Chemical Properties
Boiling Point
Flammability

Vapor Pressure
Density

Waster Solubility
Environmental Properties

Water Condiment Partition Factor
Atmospheric Lifetime

Aerobic Degradation Half Life
Health Properties

LD 50 (rat)
LD 50 (rabbit)

Milk Biotransfer Factor
Weighting Factors

Weight for Global Warming Effect
Weight for Human Toxicity

Process 
Model

There are many areas of overlap
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Chamber Cleaning with NF3/F2

HF, SiF4 F⋅ HF, SiF4

F⋅, F2, HF, N2, SiF4…

SiO2 
Deposited 
on wall

RF Power

CVD Reaction 
Chamber

Chamber 
WallPlasma 

Generator

F, NF, NF2, Ar NF3/F2, Ar, N2

N2, F-, NF+ …

Merits of NF3
− High disassociation rate
− High removal rate 
− High etch rate

Drawback of NF3 
− High cost 

Merits of F2
− Low cost

Drawbacks of F2
− High toxicity
− High reactivity
− POU generation creates explosive H2

Comparison criteria: cleaning performance, environmental impacts, 
cost
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Including Downstream Treatment

CO2, N2, O2, Ar, Low 
Concentration HF

SiF4, F2, N2…

CH4, Air Packed-
Bed 

Scrubber
Burner

Recycled 
Water

HF(aq.) to 
Central 
TreatmentSiO2 to 

Sewer
HF, CO2…

Fuel Usage   – Similar 
Water Usage – 548 gallon/yr for NF3, 566 gallon/yr for F2

– Insignificant compared to 1 million gallon/day
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Including Upstream Processes

F2
Production

KF 
Production

HF 
Production

Hydroelectric 
Plant

3.35 kg F2HF

KF

NF3
Production

1 kg NF3

NH3
Production

Upstream of NF3 Production
H2

Production

N2
Production

H2

N2 0.5 kg NH3

1.27 kW-hr 
Electricity

Gas-fired 
Plant

Coal-fired 
Plant

GasNature Gas 
Production

CoalCoal 
Production

…
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The Essence of the “Decision Problem” 

1. How much information do we need 
to know in order to get the sign 
right? 

2. How do we decide where to allocate 
resources for more analyses, 
experiments and/or better data? 
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Process Modeling Hierarchy and Resource Needs

Process Model
Hierarchy

Distribution 
of Flows

Resources 
Needed

1 Simple stoichiometric yield 1

3 Detailed kinetics (60 reactions) 100

4 Model based experiments 1000

2 Lumped kinetics (3 reactions) 10
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Knowledge Availability along Design Process

At the early design stage, little information is available.  
There is large uncertainty associated with available knowledge.
Time and resources are limited for the designer.

Where should time and resources be allocated for the data 
collection effort?
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Start Comparison with Little Information

With little information of the process, direct comparison of the
criteria is impossible.
Currently available knowledge: 2NH3 + 3F2 2NF3 + 3H2

Same cleaning
time, energy and gas 

consumptions?

Yes
No need for 
further 
analysis

F2 cleaning has 
less overall 
impacts

No
Therefore, we need to study 
how the change of efficiencies 
and cleaning time affect the 
overall impacts

It is uncertain 
which one is 
better

Further analysis 
is needed
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Hierarchical Modeling – First Process Modeling Level

Starting from estimations of cleaning gases and energy consumptions

plasma

NFEF

FbSiO
Fplasma

NFENF

NFbSiO
NF

F

SiO
F

NF

SiO
NF

tP
F

EN
EtP

F
EN

E

F
N

N
F
N

N

+=+=

==

32

22

2

33

32

3

2

2

2

3

2

3

_

_

_

_

%
  ,

%

%
2

  ,
%3

4

ξξ

Cleaning Gases

Energy

( ) ( ) %10034%
343
⋅⋅+⋅= NFHFSiFNF NNNFwhere for NF3 cleaning

for F2 cleaning ( ) ( ) %10024%
242
⋅⋅+⋅= FHFSiFF NNNF

Little process specific information is known for F%, ξE, and t

What to do

Use probability distribution functions to describe them



15

ERC Tele-seminar 6th November 2003 MIT Chemical Engineering 

Bayes Theorem – Learning from Data/Models

Data/Model

T. Bayes (1702-1761)

( | ) ( )( | )
( )

p y pp y
p y
θ θθ =

Posterior p(θ|y)Analysis
SystemPrior p(θ)

(Updated knowledge)
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Advantages of a Bayesian Approach

1. Can use prior knowledge and physical 
constraints in the analysis

2. Provides a formal framework for combining 
measurements of different quality

3. Gives the pdf’s of the solution 

4. New algorithms (MCMC) can solve non-linear 
problems

5. Broad applications including decision analysis

… Both Bayesian and Frequentist views are useful in practice
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Assumed Distributions of Efficiencies and Time

LCA includes the upstream gas production and downstream 
disposal treatment

( )
5106.0

1%
−−

=Ff

Fluorine Utilization Efficiency
− F% ~ uniform(10-5, 0.6)

Energy Utilization Efficiency
− ξE ~ uniform(10-10, 0.6)

Cleaning Time
− t (s) ~ uniform(6E-4, 1200)

Advantages of probability distributions:
− Quantitative
− Present the uncertainty of the information
− Can be refined when further knowledge is available

( )
10106.0

1
−−

=Ef ξ

( )
41061200

1
−×−

=tf
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MIT Environmental Evaluation Model

Flow Rates
Products

Byproducts
Chemical

Energy
Water
Waste

Impact 
Indicator

Weighting 
FactorsHuman Toxicity

Global Warming 
Effect

Ozone 
Depletion Effect

Respiratory 
Effect

…

Environmental 
Performance

Input 
Output 
LCA 

Model

Yield
Process Time 

…

Emissions 

Upstream & 
Downstream 
Emissions, 

Material and 
Energy Usage

Design 
Decisions Process 

Model

Compliance 
with 

Regulations
Environmental Properties

Chemical Properties

Exposure Properties

Fate, 
Transport, 

and 
Exposure 

Model

Human 
Exposure

Environmental 
Concentration

Alternative Designs
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Environmental Impacts from LCA

Comparison of the global warming potential of the two 
processes

0 0.5 1 1.5

NF3

F2

GWP of Cleaning Processes (kg CO2 equivalent)

5%

25%

50%

75%

95%

0.17
0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Relative Ratio of GWP of NF3 and F2 Cleaning Processes
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Where Shall We Go Next?

Uncertainty of 
10% is too large
for a confident 

decision?

Where to 
collect data and 
refine model?

No need for 
further analysis

Identify important 
parameters!

Yes

No

Uncertainty can come from 
− Process model
− Upstream and downstream data
− LCA model/data
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Important Parameters of Affecting Relative GWP

0.061GWP of CH2Cl2 (kg CO2 equivalent/kg)
0.067GWP of C2H3Cl3 (kg CO2 equivalent/kg)
0.078Electricity Used in Diesel Fuel Production (MJ/kg) 
-0.083H2S Emission from Oil-Fired Power Plant (kg/ kW-h Energy) 
-0.11NF3 Yield in NF3 Production from NH3 and HF 
0.12ξE_F2

-0.20ξE_NF3

-0.28Cleaning Time t (s)
0.46F%F2

-0.64F%NF3

Rank Correlation 
Coefficient

Parameter

Process model need to be refined!

Table I
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Hierarchical Modeling – Second Process Modeling Level

Lumped Kinetics and PSTR Model
Key Assumptions

• Free electrons are generated mainly by ionization Ar+e --> Ar++2e
• Electron loss and production are linear to electron concentration
• Diffusion of electrons dominates the transport of electrons.

NF3 + e -- > NF2 + F⋅ + e k3=2.06E-17 Te
1.7exp(-37274/Te) 

NF2 + e -- > NF + F ⋅ + e k2=1.57E-17 Te
1.8exp(-27565/Te)  

NF + e -- > N + F ⋅ + e k1=1.57E-17Te
1.8exp(-27565/Te) 

F2 + e -- > F- + F⋅ k =1.02E-5Te
-0.9exp(1081.8/Te)

F⋅ + SiO2 -- > SiF4 ( ) 13 1/ 2 0.1638.97 0.82 10 expF s
s

eVr n T
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Process Modeling Results

Etch Rate – Falls into industrial experience
Table II

Rank 
Correlation 
Coefficient

Important Parameters that 
Affect Etch Rate

0.545Film surface temperature (K)

0.243Electron temperature (eV)
-0.371Chamber temperature (K)

0.416

Power of the electron 
temperature of NF3
disassociation reaction in 
plasma 

-0.403
Activation energy in the SiO2
etch rate equation (J)

 Distribution for Rate, NF3 (A/min)

P
R

O
B

A
B

IL
IT

Y

Values in Thousands

0.000

0.035

0.069

0.104

0.138

0.173

0 5 10 15 20 25 30 35 40
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Fluorine Utilization Efficiency Results

0% 20% 40% 60% 80% 100%

F% of F2
Cleaning

F% of NF3
Cleaning

Ratio of F% of
NF3 Cleaning

over F2 Cleaning

Fluorine Efficiency (F%)

0

0.01

0.02

0.03

0.04

0.05

0% 10% 20% 30% 40% 50% 60% 70%

F%

Pr
ob

ab
ilit

y

Distribution of Level I
Distribution of Level II

The F2 cleaning has higher 
fluorine utilization efficiency 

Narrower distribution compared 
to the first modeling level (F% ~ 
uniform(10-5, 0.6))
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LCA Results at Second Process Level

Narrower distributions of the impacts

1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00

Global Warming

Acification Potentail

PM10 Effects

Photochemical Smog

Human Toxicity
Potential (Cancer)

Human Toxicity
Potential (Noncancer)

Ozone Depletion
Potential

Impacts

5%

25%

50%

75%

95
%

NF3
Cleaning

F2 Cleaning

(kg CFC-11 equivalent/kg)

(DALYs/kg)

(DALYs/kg)

(kg Ethylene equivalent/kg)

(kg PM10 equivalent/kg)

•(kg SO2 equivalent/kg)

•(kg CO2 equivalent/kg)
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Relative Impact of GWP 

1.7 2.2 2.7 3.2 3.7

Global
Warmnig
Potential 

Relative Impact of NF3 Cleaning to F2 Cleaning

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Relative Ratio of GWP of NF3 and F2 Cleaning Processes

Second Process 
Modeling Level

• The increase of 
modeling detail 
decreases the 
uncertainty of the 
outputs.

• Even though there 
is much uncertainty 
in the inputs, by 
directly addressing 
the uncertainty and 
using relative ratio, 
the two processes 
can be clearly 
differentiated.

First Process 
Modeling Level
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Boundary Effect 

Energy used outside the fab consists half of the total energy consumption 
for the NF3 cleaning process.  

Reducing the power needed for the plasma generator 
+

Producing NF3 and other upstream materials more efficiently  
=

Less impacts from energy generation, which is a major impact source!

0 500 1000 1500 2000 2500

Boundary --
Life Cycle 

Boundary --
Cleaning 
Tools

Energy Usage (kJ/clean)

F2 Cleaning
NF3 Cleaning



28

ERC Tele-seminar 6th November 2003 MIT Chemical Engineering 

Importance of Considering Multi-Boundaries
…

Gas-fired 
Plant

Coal-fired 
Plant

Hydroelec
tric Plant

Coal

Gas

Coal 
Production

Nature Gas 
Production

Boundary III

Plasma 
Generator

CVD 
Chamber

SiO2 to 
Sewer

HF, CO2…

Recycled 
Water

CO2, 
HF…

CH4, Air
Burner

Scrubber

Central 
TreatmentCa(OH)2

CaF2, 
HF(aq.)

HF(aq.)NF3
Production

NF3

Ar, N2

NH3
Production

F2
Production

N2
Production

H2
Production

KF 
Production

HF 
Production

SiF4, F2, N2…

Upstream Downstream

Boundary I

Boundary II

Cleaning Process
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Again, Where Shall We Go Next?

0.058Stir Rate in NF3 Production (W/m3)
-0.066Pre-exponential Term of F2 disassociation Reaction in the Plasma
-0.085NH3 Flow Rate in NF3 Production (sccm)
-0.087Temperature of Surface to be Cleaned (K)
-0.13Electron Temperature in the Plasma Source (eV)
-0.19Power to the Electron Temperature in NF2 Disassociation Reaction 
0.21Energy Used in F2 Production (J)
-0.33NF3 Yield in NF3 Production from NH3 and HF
-0.37Power to the Electron Temperature in NF3 Disassociation Reaction

0.69Power Used in Plasma Generator (W)

Rank 
Correlation 
Coefficient

Important Parameter of Relative GWP at Second Process 
Modeling Level

Table III
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Framework of Decision-Making Process

Uncertainty Analysis

Generate new 
alternatives

Environ. 
Impacts

Cost of 
Ownership

Process 
Model

Refine model, collect more data, 
increase data accuracy… Ranking and 

Sensitivity 
Analysis

No
Alternative 
Technologies:

NF3 vs. F2

Cu CVD vs. 
Cu plating

…

Info is 
enough for 
decision?

Yes

Do nothing, or 
change to 
alternative
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SEMI Cost of Ownership (CoO) Model

Throughput
Unit Volume

…

Annualized 
Fixed Cost

Annualized 
Recurring 

Cost

Equipment Yield
Parametric Limited Yield

Defect  Limited Yield 

Good 
Units 

per Year

Training
Equipment Cost

Depreciation RateFootprint
Prices

Internal Charges
Flow Rates

Products
Byproducts
Chemical
Energy
Water
Waste
…

Design 
Decisions Process 

Model

Cost of 
Equipment 
Ownership

Cost of 
Ownership

Cost of 
Yield 
Loss

Alternative Designs
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Preliminary Results of Cost-of-Ownership

Key Assumptions

− No yield loss for both processes

− Fixed costs of chamber and plasma source are the same

− POU fluorine generator depreciate linearly in 5 years

− Cleanings are done 200,000 times per year

− Added value due to lower down time of chamber system was not 
considered
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Distributions of Parameters in COO
Wide triangle distributions 
were used to describe 
parameters

Example:
Assume nominal value of NF3 
price is $0.26/g.  Then when α = 
50%, the price of the NF3 gas 
can change between $0.13/g and 
$0.39/g.
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x – random variable;
α – the percentage of change in the nominal 
value. α ~ uniform(10%, 90%);
m – nominal value of the variable.
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Distributions of Parameters of the F2 Process

( )[ ]
( )[ ] ( )

( )[ ]
( ) ( )[ ] mxm

mmmm
xmxf

mxm
mmm

mxxf

β
αββ

α

α
αβα
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−−−
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=

<<−
−−

−−
=

 if   
1

12)(

1 if            
1

12)(

Variables of the F2 process have larger upper limits to 
incorporate its less certainty.

β – Percentage of increase in the nominal value. β ~ uniform(200%, 
1800%).

Miscellaneous cost of training per system ranges from $3200 
to $400,000 with the nominal value of $4000.

By setting the coefficients α and β to be random variables, 
the uncertainty introduced by how these variables are 
modeled can be studied. 



35

ERC Tele-seminar 6th November 2003 MIT Chemical Engineering 

Results of COO Analysis

There is less than 5% that F2 cleaning will be more costly 
than NF3 cleaning

Where do the large uncertainty of the NF3 COO come from?

0 1 2 3 4 5 6 7 8 9 10111213141516171819

Recurring Cost per Clean of NF3 Process
($/clean)

Recurring Cost per Clean of F2 Process
($/clean)

Ratio of Recurring Costs per Clean of NF3
Process and F2 Process
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Identifying Important Parameters of NF3 COO

0.092Price of Argon Gas ($/g)
-0.12Power to the Electron Temperature in NF2 Disassociation Reaction
-0.13Pre-Exponential Term of Etch Reaction
-0.19Electron Temperature in the Plasma Source (eV)
0.20Chamber Temperature (K)

0.23Activation Energy of Etch Reaction (J)
-0.24Power to the Electron Temperature in NF2 Disassociation Reaction 
-0.27Temperature of Surface to be Cleaned (K)

0.34Price of NF3 Gas ($/g) 
-0.61Power to the Electron Temperature in NF3 Disassociation Reaction

Rank 
Correlation 
Coefficient

Parameter

• Most of the parameters are still from the process model!

• These are the same parameters that affect environmental impacts.
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Overlapping Data Requirements 

Mass and Energy 
Flows

Special Gases & 
Chemicals

Waste Disposal
Plant Exhaust

Bulk Gases &Chemicals
Electricity

Water
Natural Gas

Equipment Data
Equipment Yield

Fab Throughput Data
Down Time

Fab Process Data
Wafer Size

Wafer Coverage

Environmental 
Evaluation

Cost of 
Ownership

Equipment Data
Original Cost per System

Defect Density
Fab Throughput Data

Throughput at Capacity per System
Volume Requirement

Redo Rate
Fab Process Data
Faulty Probability

Clustering Parameter
Administrative Rates

Salary Rates
Labor Rates
Space Costs

Production Specific Data
Personnel per System

Maintenance Cost
Prices of Gases & Chemicals

Prices of Waste Disposal

Physical & Chemical Properties
Boiling Point
Flammability

Vapor Pressure
Density

Waster Solubility
Environmental Properties

Water Condiment Partition Factor
Atmospheric Lifetime

Aerobic Degradation Half Life
Health Properties

LD 50 (rat)
LD 50 (rabbit)

Milk Biotransfer Factor
Weighting Factors

Weight for Global Warming Effect
Weight for Human Toxicity

Process 
Model

There are many areas of overlap
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Conclusions and Key Points

The integration of process models, COO, and environmental 
evaluations is critical and feasible.

Large uncertainty in the inputs does not necessarily lead to 
low confidence in decisions.

Hierarchical modeling in combination with uncertainty 
analysis are efficient way to support the decision making and 
resource allocation process.

The next step is to develop an integrated software 
environment

UNCERTAINTY = IGNORANCE
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End of PresentationEnd of Presentation
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