Atmospheric Microwave Plasmas for the Abatement of Perfluorocompounds

Dr Marilena Radoiu

BOC Edwards Kenn Business Park Clevedon, North Somerset, UK

E-mail: Marilena.Radoiu@bocedwards.com

- Greenhouse Effect & Greenhouse Gases
- PFC Emitters
- Methods for PFC Emissions Reduction
- Plasma types & Plasma Generation
- Atmospheric Microwave Plasmas
- BOC Edwards Zenith Etch Plasma
- Chemistry of PFCs Abatement in the Presence of Water: CF₄, C₂F₆, CHF₃ and SF₆
- Conclusions

• The Kyoto Protocol calls for reductions in the emission of greenhouse gases, those gases with stronger global warming potential than CO₂

Slide 3

Gases in the atmosphere can contribute to the greenhouse effect both

Directly: when the gas itself is a greenhouse gas Example: H_2O , CO_2 , CH_4 , N_2O , O_3 .

Indirectly: - when chemical transformations of the original gas produce other greenhouse gases;

- when a gas influences the atmospheric lifetime of other gases;
- when a gas affects atmospheric processes that alter the radiative balance of the earth;

Example: *perfluorocarbons* (PFCs), *hydrofluorocarbons* (HFCs), and *sulphur hexafluoride* (SF₆)

Global warming gas	GWP ₁₀₀	Atmospheric lifetime, years
CO ₂	1	50 - 200
CH ₄	21	12
N ₂ O	310	120
CF ₄	6,500	50,000
C ₃ F ₈	7,000	2,600
C ₂ F ₆	9,200	10,000
CHF ₃	11,700	264
SF ₆	23,900	3,200

GWP = Global Warming Potential - depend of IR-absorption and time horizon (hold up time) in the atmosphere

 GWP_{100} = Integral about the time horizon 100 years

Slide 5

Aluminium manufacture – unintentional byproducts C₂F₆ and CF₄

Semiconductor industry — largest emitter of intentionally produced PFCs

Slide 6

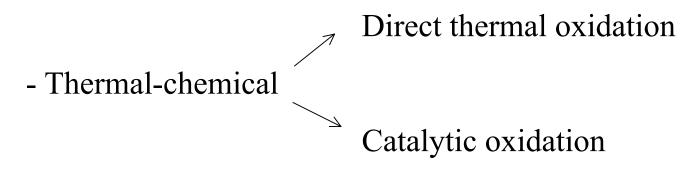
Emission Reduction Targets

Fluoric gases like PFCs, HFCs and SF_6 are utilized to clean devices in semiconductor manufacturing processes

PFCs Dielectric Etch CF₄, CHF₃, CH₃F, CH₂F₂, C₄F₈, C₅F₈ **Polysilicon Etch** CF₄, CHF₃, CH₂F₂, (HBr, Cl₂)

Dielectric Etch may also use toxic and corrosive species NF_3, C_4F_6, SF_6

A reduction in emissions to 90% of the baseline year levels by 2010. - World Semiconductor Council, Okinawa, May 2001


Slide 7

Methods for PFC Emissions Reduction

• DECOMPOSITION of PFCs to non-hazardous materials

- Combustion
- Plasma

- RECYCLE & RECOVERY of the unused PFCs
- PROCESS OPTIMIZATION and/or REPLACEMENT of PFCs with other gases

What is a Plasma?

- Mixture of electrons, ions, and neutrals in the ground state, excited species, and photons with negative and positive charges balance each other (quasi-neutrality).
- Electrically conducting due to the presence of free charge carriers both negative (electrons and negative ions) and positive (positive ions).
- Affected by magnetic fields.

• Local Thermodynamic Equilibrium (LCT)

 $T_{electrons} = T_{heavy particles}$

• Non-equilibrium Plasmas

 $T_{electrons} >> T_{heavy particles}$

Slide 10

Most energy for generating plasmas is supplied by electric sources:

- Electric discharges of high (MHz level) or very high (GHz level) frequency, in which an electromagnetic field is the source of energy
- Arc discharges, characterized by great concentrations of energy, originating from an electric arc.

Also, specific types of electric discharges: spark, corona, glow, silent or barrier

Why Use a Microwave Atmospheric Plasma?

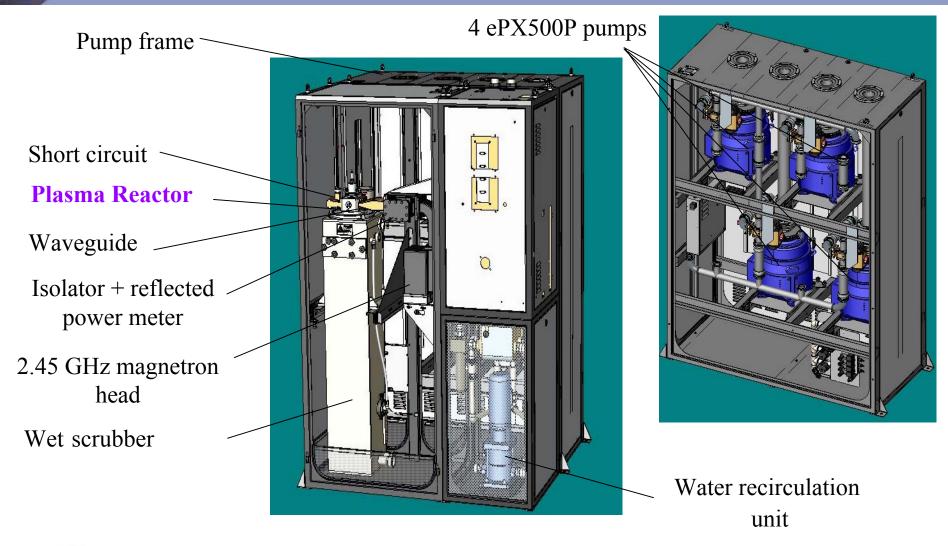
- Electron density and temperature is higher than in radiofrequency (RF) or direct current (DC)
 - \Rightarrow Higher reactivity
- Electrons are primarily responsible for the absorption of energy from the electric field
 - ⇒ The gas stream itself is used as the resistive medium for transferring electrical energy into heated gas molecules
- Intimate interaction between the wave and the plasma
 - \Rightarrow The wave supplies energy to the plasma, but without the plasma, the wave could not exist \Leftrightarrow local balance between the power supplied by the wave and the power lost from the plasma

• Uses less energy than a burner or catalytic system

- Low operational risk compared to other thermal systems
 No fuel gas
 - No electromagnetic emissions
- Post-pump install
- No foreline modifications required ↔ No risk of contamination/corrosion of pump & tool
- Maintenance does not require breaking of the vacuum lines

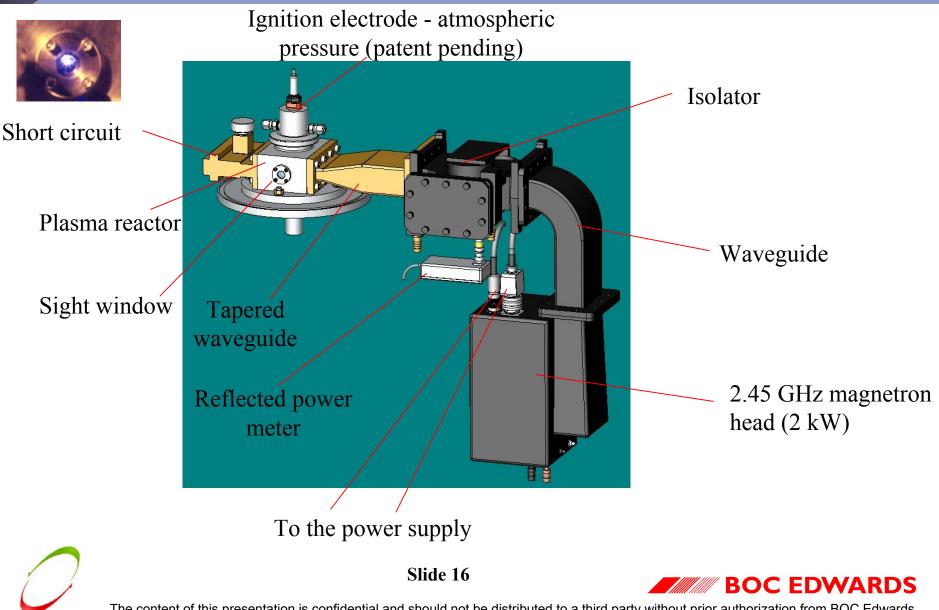
Zenith Etch Plasma

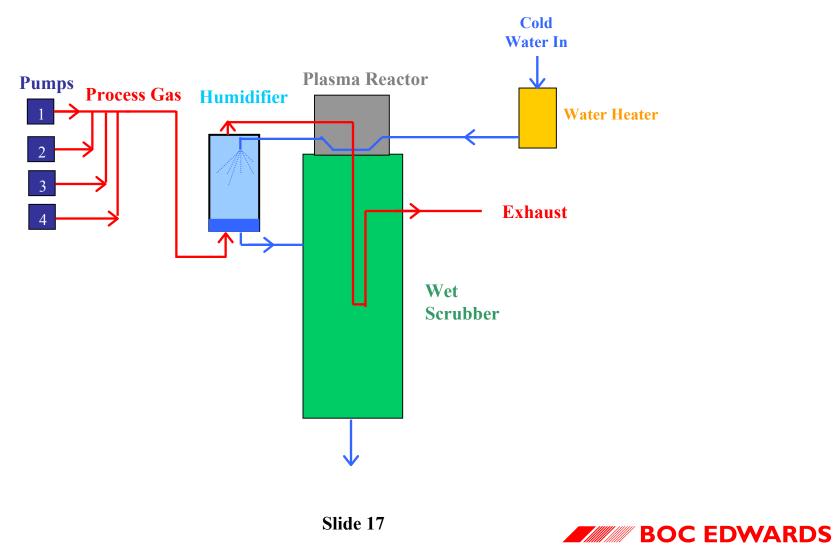
Integrated Vacuum & Abatement Technology


- Abatement: 2.45 GHz Microwave Atmospheric Plasma (PFCs, HFCs, SF₆ etc.) with Wet Scrubber (HAPs)
- Vacuum: 4-pump process
- ! Provides a non-fuel abatement alternative

Slide 14

Zenith Etch Plasma Module




Slide 15

Microwave & Plasma System

Plasma 'Circuit Diagram'

Target!

Convert PFCs to less harmful substances to the environment

$$CF_4 + 2H_2O \rightarrow CO_2 + 4HF$$

CF₄ abatement provides the highest challenge

- PFCs produce CF₄ as by-product
- D(CF₃-F) ~ 130 kcal/mole
- Large infrared absorption cross-section \Leftrightarrow Large GWP (5700)

Reagent H₂O – source of hydrogen and oxygen

Slide 18

Abatement System – Basic Technology

Plasma

- Atmospheric pressure plasma
- Discharge @ 2.45 GHz microwave
- Nitrogen-based gas flow

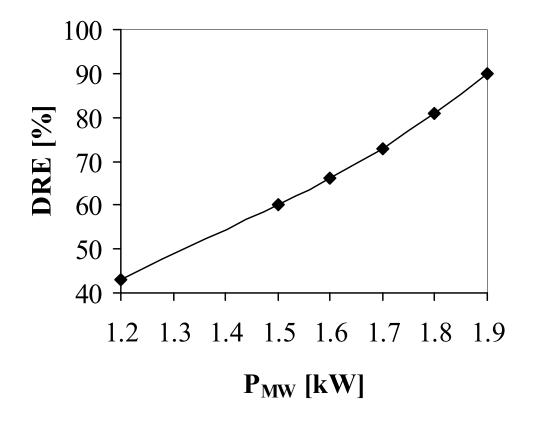
Reagents

- Water
- Non-toxic

Wet Scrubber

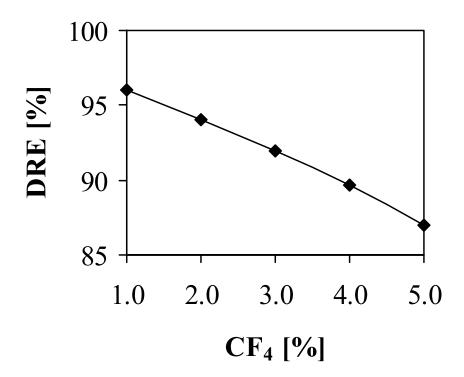
• Water removal of HAPs

Abatement Performance


- Total flow rate 20 L/min Total Microwave Power 1.9 kW
- DRE > 90% for CF_4
- DRE > 99% for all other PFC gases used in Dielectric Etch processes

Slide 20

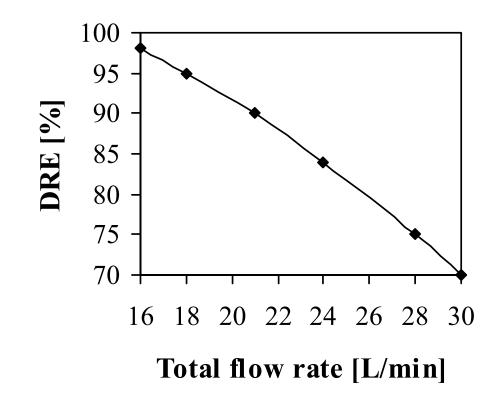
DRE of CF₄ vs. Microwave Power



Total flow rate = 20 L/min Molar ratio $H_2O/CF_4 = 2.5/1$ $CF_4 = 0.8$ L/min

Slide 21

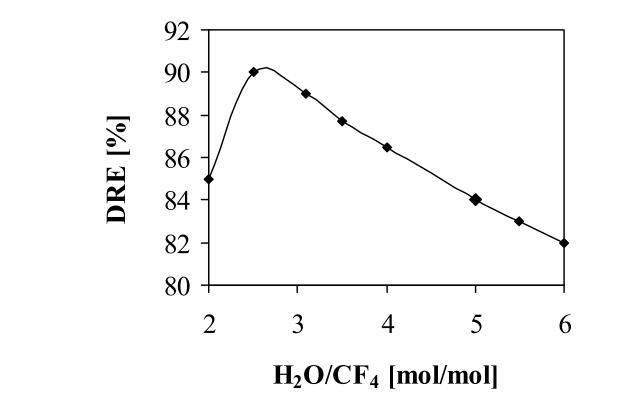
DRE of CF₄ vs. Initial CF₄ Concentration



Total flow rate = 20 L/min Molar ratio H₂O:CF₄ = 2.5:1 P_{MW} = 1.9 kW

Slide 22

DRE of CF₄ vs. total flow rate


CF₄ = 0.8 L/min Molar ratio H₂O:CF₄ = 2.5:1 P_{MW} = 1.9 kW

0

Slide 23

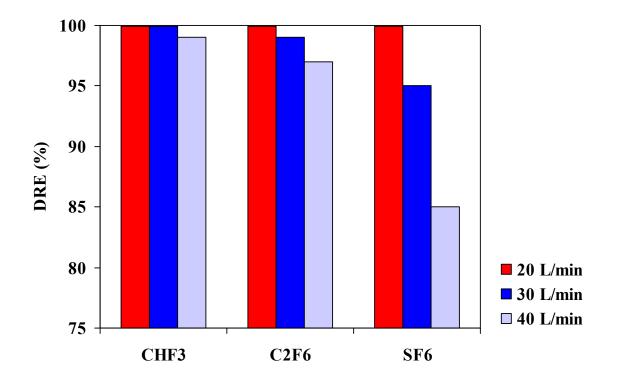
DRE of CF₄ vs. H₂O amount

 $CF_4 = 0.8 L/min$ $P_{MW} = 1.9 kW$

Slide 24

$C_2F_6 + 3H_2O + \frac{1}{2}O_2 \rightarrow 2CO_2 + 6HF$

$CHF_3 + H_2O \rightarrow CO + 3HF$


$SF_6 + 3H_2O \rightarrow SO_3 + 6HF$

Slide 25

DRE vs. Total Flow Rate

 $CHF_3 = 0.4 L/min; C_2F_6 = 0.4 L/min; SF_6 = 0.4 L/min$

 $P_{MW} = 1.9 \text{ kW}$

Molar ratio H₂O:CHF₃ = 2.5:1; H₂O:C₂F₆:O₂ = 3.5:1:0.5; H₂O:SF₆ = 3.5:1

Slide 26

HF CO₂

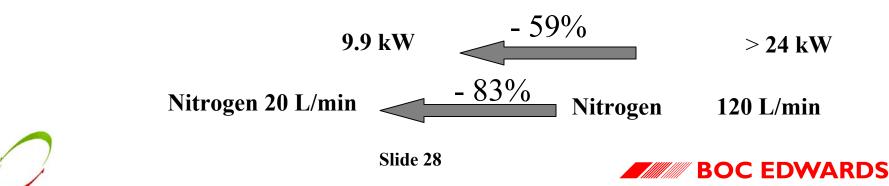
! OF₂ NOT DETECTED

! NO SOOT FORMATION

Slide 27

Conclusions

Effective PFC emission reduction by integrating the atmospheric plasma abatement with wet scrubbing
 ~ 60% utilities savings


Example:

Zenith Etch Plasma

Microwaves:	1.9 kW
Water Recirculation Unit:	1.6 kW
Pumps (EPX500) 4 x 1.6 kW	6.4 kW

Commercially available

Microwaves:	12 kW
Post Scrubbing Unit	Unknown
Pumps (iH-600) 4 x 3 kW	12 kW

Additional Benefits

- Good plasma stability proven for a wide range of operating conditions – total gas flows and PFCs concentration;
- Chemical flexibility can be used as oxidizing as well as reduction processes;
- Efficient energy transfer the gas stream itself is used as the resistive medium for transferring electrical energy into heated gas molecules;
- Efficient energy usage plasma can be instantly ignited or extinguished via simple electrical control, so that the energy is only consumed when PFCs are flowing.

