"Disks to Rods: Nanometer-Scale Characterization and Control of Self-Organizing Molecular Systems of Interest for Emerging (Hopefully) Electronic and Energy Conversion Technologies"

Organic Field-Effect Transistors are Coming (Here!)

For example: Howard Katz, Zhenan Bao, *J. Phys. Chem. B.*, <u>104</u>, 671 (2000).

"on state"

Emerging Technologies Based on Organic Thin Film Materials

Organic Light Emitting Diodes

Organic Solar Cells

Flexible Displays

Organic Field-Effect Transistors

http://www.research.phillips.com

"Paper 2.0" E-Ink/Lucent

"Paper 2.0" E-Ink - Recent Updates

February 2004

Inkjet Printing/Self-Organization >> New Electronic Technologies

March 2004

Dewetting of conducting polymer inkjet droplets on patterned surfaces

J. Z. WANG¹, Z. H. ZHENG¹, H. W. Ll², W.T.S. HUCK² AND H. SIRRINGHAUS^{1*} ¹Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, UK ¹Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK *e-mail: hs220@phy.cam.ac.uk

Materials of Interest

Pentacene μ =3.4 cm²V⁻¹S⁻¹ Kelly et al *J.Phys.Chem* .*B* (107) **2003** 5877

Poly thiophene μ =0.1 cm²V⁻¹S⁻¹ Sirringhaus et al *Science 280* **1998** 1741 Phthalocyanine μ =0.02 cm²V⁻¹S⁻¹ Dodabalapur et al *App.Phys.Lett.69* **1996** 3066

Oligothiophene α -6T μ =1.1 cm²V⁻¹S⁻¹ Dodabalapur et al *Science (290)* **2000** 963

Amorphous silicon

 μ =1.0 cm²V⁻¹S⁻¹

State-of-the-Art: Pentacene OFETs

Discotic Mesophase Materials in Organic Field Effect Transistors

Charge Mobilities in Discotic Mesophase Materials

Charge hopping in van der Waals solids

Hole/Electron mobilities related to:

- a) (+./-.) stabilities,
- b) low reorganization energies for charge movement (λ),
- c) large electronic transfer integrals (t).

Polaronic model:

$$k_{ET} = f_0 \exp [-(E_{k+/-1}^p - E_k^p + 2\lambda_p)^2/8k_B T \lambda_p]$$

e.g.: Schouten, Warmen, et. al., J. Amer. Chem. Soc., <u>114</u>, 9028 (1992).

Simplified Marcus model:

 $k_{ET} = (4\pi^2/h) [1/(4\pi\lambda k_B T)^{1/2}] (t^2)exp(-\lambda/4k_B T)$

e.g. Brédas and coworkers, Proc. Nat'l. Acad. Sci., <u>99</u>, 5804 (2002); Advanced Materials, <u>13</u>, 1053 (2001); Chem. Phys. Lett., <u>327</u>, 13 (2000).

New Self-Organizing Materials

Building a discotic mesophase Pc

Central metal selection

Pc-Pc interactions – "polymorphism"

2 + 2 cycloaddition

Side chain interactions – electron withdrawing, electron donating, site of attachment, length of side chain, branching, polymerizable groups, terminal groups

Drager, O'Brien, J.Org. Chem. 2001

Horizontally Transferred Monolayers/Bilayers from LB Films

Tapping Mode AFM (solution) Single Bilayers/Si(100)

Interface Modification >> Macroscopic/Microscopic Order **Methyl Phenyl/Methyl** CH3H3 CH3H3 CH3H3 BH₃ Si H₃C C CH₂CH₃ CH_{CH3} Si H₃CO CH₂ H₃C O H₃C H₃C H₃C H₃C Oxide Śi Śi Si

Phenyl

Silicon

Fluorophenyl/Methyl

Silicon

Coherence of Rod-Like Aggregates of 100-300 nm

Other processing strategies – photopolymerization of rod-like aggregates

Drager, Zangmeister, Armstrong, O'Brien – *JACS* 2001 Donley, Xia, Minch, Zangmeister, Armstrong, O'Brien – *Langmuir* 2003

Photolithography Down to 2 micron Features

Microstructure: RAIRS and Transmisison FT-IR

Carrie Donley, Sergio Mendes, in preparation

(A) Before annealing: $\alpha = 45^{\circ}, \theta = 74^{\circ}, \phi = 55^{\circ}$

(B) After annealing: $\alpha = 45^{\circ}, \theta = 77^{\circ}, \phi = 63^{\circ}$

(C) After polymerization: $\alpha = 45^{\circ}, \theta = 90^{\circ}, \phi = 66^{\circ}$

Other Appealing Discotic Mesophases: Hexa-benzocoronene -- HBC

d.c. Conductivities - Interdigitated Array Microelectrodes

 $\mu_{\parallel} \approx 5 \ge 10^{-4} \text{ cm}^2/\text{volt} \cdot \text{sec}; \ \mu_{\parallel}/\mu \perp = 10\text{-}100$

Preliminary OFET Measurements - Anisotropies in Charge Mobilities Probes W=1000μm, L=10μm -2.0 Contacts -1.5 Pc film $V_{gs} = +5V \text{ to } -5V$ 0.0 0.5 -5 -10 -15 -20 0 V_D (volts) -5- $V_{G} = -10v$ -4 Drain Current (nA) $V_{G} = -8v$ -3 -2 $V_{G} = -6v$

-1

0

0

-5

Drain Voltage (V)

-10

 $V_{G} = -4v$

 $V_{G} = -2v$ $V_{G} = 0v$

-15

Carrie Donley, Samir Cherian, Wei Xia, Dave Mathine

Grain boundaries and defects control electrical properties

Tunneling AFM - ca. 500 nm from Au bond pad

S/D Contact Chemical Modification – Normal and Unusual SAMs

Carrie Donley, Samir Cherian, Wei Xia, Dave Mathine

Optimization of Pc Photoreceptors

O-Et-O-Bz CuPc

K↔D_h 111°C; D_h↔I > 400°C; difficult to process as spin-cast thin films

X-Et-O-Bz CuPc

 $K \leftrightarrow D_h 134^{\circ}C; D_h \leftrightarrow I 320^{\circ}C;$ easy to process into thin films by spin-coating (chloroform)

Britt Minch, manuscript in preparation

Device Configuration

4.2

Al

First-generation OPVs

Electron transport materials

"Star-like" discotic LC oxadiazole materials with high electron mobility

S. Marder and coworkers

Collaborators/Research Support

Carrie Donley (Cambridge Univ.); Britt Minch (MPIP-Mainz); Rebecca Zangmeister (NIST); Tony Drager (Dow); Paul Smolenyak (YCC); Elizabeth Atkinson (Linfield College)

Wei Xia, Samir Cherian; Adam Simmonds; Rick Workman

Dave Mathine, Bernard Kippelen,

Seth Marder: David O'Brien

National Science Foundation (Chemistry and

STC-MDITR); DOE-NREL; ONR; Materials Characterization Program (Arizona)

