
The Use of Life Cycle Assessment as a Screening 
Tool for Environmental Performance:

Supercritical Carbon Dioxide Use in the 
Semiconductor Industry
Paul Blowers and Monica Titus

Department of Chemical and Environmental Engineering

The University of Arizona

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing



Environmental/Economic Drivers for Process Innovation
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Pollution treatment never makes money for the company running the processes

However, large savings can be made by avoiding the need for treatment in the 
first place

Considerations like these must take place at the design stage to be most effective

Get a reduction in costs while also improving the environmental performance of 
a process

Win/Win situations are possible

Environmental Impact

Economic Savings$
$
$



Attractiveness of supercritical fluids in process applications
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Can avoid organic solvents that are traditionally used in separations/reactions

less ozone depletion, toxicity, cost, separations, fossil fuel depletion

Can tune performance of sc fluids for enhanced properties

better reaction selectivity → separations afterwards

better or changeable solvent properties → less solvent need, better 
separations

Can use small amounts of additives to achieve better performance

sometimes 100% recyclable → less cost

So, which fluids may be useful for semiconductor processing?



scCO2 as a good choice?  And, use of additives…
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CO2 is attractive for many reasons:

Its critical region is at fairly low pressures and temperatures compared to other 
materials → lower environmental and economic costs during its use

Using CO2 may reduce overall CO2 generation from other facilities depending on the 
source.

It has been used in many other industries so it is more familiar, may need additives.

Fragrance Extraction Remove bitterness from beerDry cleaning application



Roadmap of ITRS
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The International Technology Roadmap for Semiconductors (ITRS) is a plan for 
achieving better environmental, technical, and economic performance over the next 
several years and is continually updated.

ITRS says:
Develop processes that meet technology demands while reducing impacts

Develop effective management tools to deal with disposal

Design more energy and water efficient processing equipment

Reduce emissions from processing using GWP chemicals

Need integrated way to evaluate and quantify ESH impacts

Specifically, reduce water usage by about 20% over the next three years

Reduce energy usage by about 40-50 % over the next three years



Photoresist removal and current process with water
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Photoresist removal and supercritical CO2 usage
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Environmental Assessment Tools
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First Step to Generating an LCA
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LCI comes before LCA in the information chain

Need to set boundaries of the investigation

Can impact results so clear boundaries are needed

This is a Gate-to-Gate study

Does not quantify upstream information

Does not quantify downstream information

Disposal of ion exchange resins (UPW)

This LCI will quantify materials usage for consumables, but not 
equipment (more important for UPW) and will quantify energy 
needed for each wafer per cleaning cycle



Importance of Boundaries
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LCI - Gate to Gate and Limitations
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Limitations to LCI only approach

No impacts yet - decisions may not be clear if there are 
conflicting environmental results

No economics yet - can be addressed by COO but requires 
more information

No upstream information - supplier concerns and deciding 
whether or not the gate-to-gate improvement is actually 
better overall

No post-use information - customer concerns and deciding 
whether impacts may be generated outside the factory 
boundary

Benefit = speed and still getting useful data



LCI - Gate to Gate
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scCO2/UPW 
use in plant, all 
internal uses 
quantified

Downstream 
disposal 

Upstream 
sources and 
contributions 
to overall 
environmental 
impacts

Cradle GraveGate to Gate

Can build and verify Gate to Gate 
LCI/LCA faster due to the large decrease 
in required information.

Future work will expand the 
boundaries…more later about those 
impacts



Basis for numbers reported in this work: Assumptions and sources of data 
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US Patents Used: 6,306,564; 6,509,141; 6,319,410; 
6,509,141; 6,562,146; 6,558,475

(patents can be vague  →uncertainties in info.  
Can be handled by methods introduced by McRae, MIT)

Physical properties from NIST Webbook, CRC Handbook 
of Chemistry and Physics, Perry's Handbook.

Design heuristics from Seider, et al. (1999).

Heat transfer correlations from McCabe, et al. (2001)

Energy balance correlations for heats of vaporization, 
Felder, et al. (2000)



The flowsheet again with numbers and conditions
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Assumptions Used in Calculations
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Limited data for propylene carbonate heat capacities

Assumed linear function of Cp with T and expanded to T's 
outside of measured range

Masses of CO2 lost per cycle

Assumed that the total tank volumes of the system would need 
to be purged per cleaning cycle and this CO2 lost

Number of wafer in each CO2 cycle

No numbers given so assumed worst case scenario of 1 per 
cleaning cycle

An increase in this number reduces the impacts by that amount 
per wafer!



Material Balance Needs per Cycle
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Per cleaning cycle, there will be some 
losses of CO2 during start-up and purging.

Mass lost = 1.01 kg/cleaning cycle

There will be some propylene carbonate 
lost per cleaning cycle during separations 
unless this substance is purified from the 
contaminants and recycled.

Mass lost = 0.272 kg/cleaning cycle

May have emissions concerns if regulations on CO2 become 
more stringent



Energy (kJ)  Estimates for Equipment (Assume 1 cycle = 1 wafer)
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Processing Step Piece of Equipment Energy Duty (kJ/cycle)

Start-up Pump negligible 

Purging Heater 134.71

Clean and Separation Cooler* -151.46

Pump 52.58

Heater 173.70

Separator heater 125.35 

Flush Cooler* -97.33

Pump 35.07

Heater 98.57

Separator heater 83.71

*Cooler (10oC) Refrigeration cycle 298.28 
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Energy Estimates for Equipment (Assume 1 cycle = 1 wafer)

Total CO2 pumping cost per cycle = 86.75 kJ

Energy cost of mixing per cycle = 0.02 kJ

Energy cost of heating pressure chamber and cosolvent vessels = 616.04 kJ

Cooling costs = 248.79 kJ

Costs for cooling shifted to refrigeration = 298.28 kJ

Total energy costs = 1001.97 kJ per cycle 

Note: did not estimate the energy requirements of separation and recovery steps 
of cosolvent
Recovery of PCO3 from the waste stream could be energy intensive

(not described in any patents or publications)

Largest energy costs are for heating the pressure chamber 



Validation of Results So Far
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Water is somewhat recyclable, but scCO2 may be 100% 
recyclable due to ease of separations as sc conditions are 
removed → less energy (separation costs)

All research shows CO2 to be 100% recyclable

One company has verified that many of our estimates are 
in fact close to processing numbers → assumptions are 
correct so far.

Some published information not available 
from national labs due to security concerns 
→ cannot verify results versus actual 
measurements and non-patent data



A Comparison to UPW Use
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A typical fabrication facility will use approximately 2,000 gal of UPW to 
make one eight inch wafer with about 60% of the water being used in 
wafer rinsing 

And, it takes about 46 kWh of energy to produce 1000 gal of UPW 

There are approximately 130 wafer rinsing steps in semiconductor
manufacturing chains based on water usage per tool 



A Comparison to UPW Use: Materials
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30 to 40 percent of the UPW will be sent to the 
sewer after rinsing.  

This water may be reused internally prior to
sewering, but it will still need to be replaced by 
fresh city water.  This means that up to 480 gal 
(1817 kg) of water need to be provided for 
rinsing of each wafer processed, or 3.69 gal 
(13.97 kg) per cycle per wafer .



A Comparison to UPW Use: Energy
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Total Energy Requirements are 1,528 kJ/wafer/ 
cleaning cycle

This is an increase of 52% over the energy cost of 
scCO2 if only one wafer can be processed at a time, 
but much larger than that if multiple wafers can be 
cleaned.



Other LCI/LCA Impacts to Quantify if Boundaries are Expanded: 

Trade-offs
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There are no dedicated CO2 distribution networks like there are for water.  CO2 
will need to be transported by truck → fossil fuel depletion, smog formation, 
greenhouse gas emissions.

Disposal of CO2 for equipment maintenance, leaks, etc., would add to CO2
emissions.

Upstream manufacturing of scCO2 of this high purity may add to energy costs 
during production → fossil fuel depletion, greenhouse gas emissions.

Water is a resource that is being depleted rapidly in many areas where 
semiconductor plants are located → nonrenewable resource depletion

Need to follow-up on PCO3 recycling and separations to make sure they are 
100% and what those costs are



Future Work: Expanding Boundaries

Expand LCA back upstream to quantify overall impacts from manufacturing CO2:
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Future Work: Cost of Ownership
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The next step in making this work relevant is to complete a cost of 
ownership study to estimate the fixed and operating costs for the 
scCO2 process. 

Some information may be 
available from SC Fluids 
who has licensed the 
technology from Los 
Alamos National Labs.

The price of CO2 and PCO3
are both important to the 
economics since they are 
lost during manufacturing.



Future Work: External Decision Information Gathering
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Money for large expansion of scCO2 and PCO3 use

PCO3 is used as a reactive diluent to reduce cost in applications 
such as isocyanate (PMDI) wood binders / adhesives and 
urethane coatings / elastomers / adhesives. 

A more recently discovered application for PCO3 is in 
rechargeable lithium batteries. Eighty percent of a rechargeable
lithium battery is the filler, PCO3. 

How much can the market bear for increases?

Optimization of scCO2 process - if costs are problematic, it may be 
necessary to optimize the process instead of just having it workable for this 
application.

Vendor collaborations to address concerns can address other COO and 
external information concerns.



Conclusions

scCO2 has many advantages over UPW use for wafer rinsing

can recycle without contamination worries

has lower energy costs per cleaning cycle

Some disadvantages

CO2 emissions during purge and start-up steps

transportation and high purity CO2 costs may make CO2
unfavorable from a full LCA perspective
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