A Model of Chemical Mechanical Polishing Ed Paul

Stockton College Pomona NJ 08240 USA

1 April 2004

Outline

Goal Explain how the polishing rate depends on slurry formulations and mechanical conditions. Model Chemical and Mechanical Balance **Chemical Formation** Oxidizer concentration Mechanical removal Pads, polishing pressure and speed Abrasive loading, abrasive diameter Inhibitors **Extensions** Conclusion

Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate-Based Slurries I. Role of Alumina and Potassium Iodate David J. Stein, Dale L. Hetherington and Joseph L. Cecchi

Journal of the Electrochemical Society 146 376-381 (1999)

Figure 5. The polish rate at the three settings of polish pressure and rotation rate is shown as a function of KIO_3 concentration. The concentration of PHP was 0.05 M and the slurry contained 5 wt % alumina.

Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate-Based Slurries I. Role of Alumina and Potassium Iodate David J. Stein, Dale L. Hetherington and Joseph L. Cecchi

Journal of the Electrochemical Society 146 376-381 (1999)

Figure 2. The polish rate data for both the IC-1400 and Politex regular pads are shown. The lines represent the best fit of the data to the Preston equation (Eq. 1).

Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate-Based Slurries I. Role of Alumina and Potassium Iodate David J. Stein, Dale L. Hetherington and Joseph L. Cecchi Journal of the Electrochemical Society 146 376-381 (1999)

Figure 3. The polish rate at the three settings of polish pressure and rotation rate is shown as a function of alumina concentration. The concentration o. KIO_3 was 0.1 M and PHP was 0.05 M.

Effect of Particle Size during Chemical Mechanical Polishing M. Bielmann, U. Mahajan, R.K. Singh

Electrochem. Solid-State Lett. **2,** 401-403 (1999)

Figure 4. Tungsten removal rate vs. solids loading for different particle size distribution.

Multiscale Processes, Part I

Fluid Dynamics 1 mm

slurry thickness partial lubrication coefficient of friction

Multiscale Processes, Part II

Multiscale Processes, Part IIIAbrasive – Pad Interactions100 nmAbrasive – Wafer Interactions10 nmWafer – Slurry Reactions1 nm

P = 0

Chemical Formation and Mechanical Removal of a Surface Complex

Chemical Formation	$W + C \rightarrow WC$	$r_{c} = \kappa_{c} n_{W}$
Mechanical Removal	WC \rightarrow W + Y	$r_M = \kappa_M n_{WC}$

- **W** Wafer material (Tungsten)
- **C** Chemical in reaction (Oxidizer)
- **WC** Surface complex formed by reaction (Oxide)

 n_W Unreacted Sites n_{WC} Reacted Sites Total Sites $n_{oW} = n_W + n_{WC} = A_W / d_W^2$

Removal Rate

R =
$$τ_1$$
 κ_M n_{WC} / A_W

A_W Wafer area	τ_1 removal depth	τ removal depth per site area
At steady state	$\kappa_{\rm C} n_{\rm W} = \kappa_{\rm M} n_{\rm WC}$	$\mathbf{n}_{\mathrm{WC}} = \frac{\mathbf{n}_{oW} \kappa_{C}}{\kappa_{C} + \kappa_{M}}$
CMP Polishing Rate		$\mathbf{R} = \frac{\tau \kappa_C \kappa_M}{\kappa_C + \kappa_M}$
ch	emical rate constant	$\kappa_{\rm C} = k_{\rm C} [{\rm C}]$

Removal Rates - Oxidizer Concentration

$$R = \frac{\tau \kappa_{M} k_{C}[C]}{k_{C}[C] + \kappa_{M}}$$

$$= \frac{\left(\tau \kappa_{\rm M}\right)[\rm C]}{[\rm C] + \left(\kappa_{\rm M}/\rm k_{\rm C}\right)}$$

$$=\frac{a_{c}X}{b_{c}+X}$$

Maximum Rate = a Initial Slope = a / b a and b depend on variables other than X

W-CMP R([C])

D. J. Stein, D. L. Hetherington, and J. L. Cecchi

J. Electrochem. Soc. **146**, 376 (1999)

Mechanical Removal of the Surface Complex

 $r_M = \kappa_M n_{WC}$

 $\kappa_{M} \sim \text{Active abrasives * Area swept} \sim n_{A} (A_{C} v)$

Pad properties Abrasive pad interactions Abrasive – surface interactions

Pad Properties

Yu, Yu and Orlowski International Electronic Devices Meeting 1993 Quoted as Fig. 4.27 in Steigerwald, Murarka and Guttman *Chemical Mechanical Planaization of Microelecgtronic Materials*

Preston Equation $\kappa_{M} \sim (A_{c} v) = (k'_{M} \alpha/E) Pv = k_{M} Pv$

Nominal Pressure and Effective Pressure

$$F_{on Pad} = PA_W = P_{effective} A_C$$

 $P_{effective} = E / \alpha$

Removal Rates – Pressure and Speed

$$\mathbf{R} = \frac{\tau \kappa_{\mathrm{M}} \mathbf{k}_{\mathrm{C}}[\mathbf{C}]}{\mathbf{k}_{\mathrm{C}}[\mathbf{C}] + \kappa_{\mathrm{M}}} = \frac{\tau \mathbf{k}_{\mathrm{M}} \mathbf{P} \mathbf{v} \mathbf{k}_{\mathrm{C}}[\mathbf{C}]}{\mathbf{k}_{\mathrm{C}}[\mathbf{C}] + \mathbf{k}_{\mathrm{M}} \mathbf{P} \mathbf{v}}$$

$$= \frac{(\tau k_{C}[C])Pv}{(k_{C}[C]/k_{M}) + Pv} = \frac{a_{Pv}Pv}{b_{Pv} + Pv}$$

$$a_{_{P_{v}}} = \tau k_{C}[C] \qquad b_{_{P_{v}}} = \frac{k_{C}[C]}{k_{M}} = \frac{k_{C}[C]E}{k'_{M}\alpha}$$

W-CMP R(Pv) for Two Pads

Abrasive – Pad Interactions

Active abrasives n_A

Total abrasive sites $n_{oP} = n_A + n_S$ On – off balance k_{ON} [A] $n_A = k_{OFF} n_S$

$$n_{A} = \frac{n_{oP}[A]}{[A] + K_{Pad}} = n_{oP} f(A) \qquad \qquad K_{Pad} = \frac{k_{ON}}{k_{OFF}}$$

Mechanical Removal Rate

$$r_M = \kappa_M n_{WC} = k_M Pv n_{WC} = k_{oM} f(A) Pv n_{WC}$$

CMP Removal Rate

$$R = \frac{\tau \ k_{oM} f(A) \ Pv \ k_{f}[C]}{k_{f}[C] + k_{oM} f(A) \ Pv} = \frac{\tau k_{C} \ k_{oM}[C] \ [A] \ Pv}{k_{C}[C] \ K_{Pad} + k_{C}[C] \ [A] + k_{oM}[A] \ Pv}$$

$$R = \frac{[C] [A] Pv}{a_1[C] + a_2[C] [A] + a_3[A] Pv}$$

$$R = \frac{a_A[A]}{b_A + [A]}$$

when [C] and Pv are constant

W-CMP R([C], Pv) and R(%A, Pv)

D. J. Stein, D. L. Hetherington, and J. L. Cecchi *J. Electrochem. Soc.* **146**, 376 and 1934 (1999)

🔶 3 psi 30 rpm 🔺 6 psi 60 rpm 🛛 🗖 9 psi 90 rpm

W-CMP $R(%A, d_A)$

M. Bielmann, U. Mahajan, and R. K. Singh, *Electrochem. Solid State Lett.* **2**, 401 (1999)

Abrasive Loading %A and [A]

%A g abrasive / 100 g slurry

 ρ_{A} abrasive density

slurry [A] abrasive particles / cc slurry ρ_f slurry fluid density d_A abrasive diameter

[A] =
$$\frac{6}{\pi d_{\rm A}^3} \left[\frac{\% A}{(1 - \rho_{\rm A} / \rho_{\rm f})\% A + 100 \rho_{\rm A} / \rho_{\rm f}} \right]$$

W-CMP $R([A], d_A)$

M. Bielmann, U. Mahajan, and R. K. Singh, *Electrochem. Solid State Lett.* **2**, 401 (1999)

Effect of Particle Size during Chemical Mechanical Polishing M. Bielmann, U. Mahajan, R.K. Singh Electrochem. Solid-State Lett. 2, 401-403 (1999)

Figure 3. Local roughness of polished surfaces expressed in root mean square value vs. particle size.

Inhibitors

 $\begin{array}{ll} WC+I \rightarrow WCI & r=k_{fWCI} \; n_{WC} \; [I] \\ WCI \rightarrow W+Y & r=k_{MWCI} \; f(A) \; Pv \; \; n_{WCI} \end{array}$

$$\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{o}}} = \frac{1 + \rho \gamma [\mathrm{I}]}{1 + \gamma [\mathrm{I}]}$$

Inhibitors

$$\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{o}}} = \frac{1 + \rho \gamma [\mathrm{I}]}{1 + \gamma [\mathrm{I}]}$$

R. Vacassy, Cabot Microelectronics

Acknowledgements

Zygo, Inc.	Chris Evans
Cabot Microelectronics	Frank Kaufman, Robert Vacassy, Vlasta Brusic, Jian Zhang Fred Sun
University of Arizona	Ara Philipossian
Clarkson University	S.V. Babu

for their encouragement, insights and suggestions

Conclusion

CMP modeling can help understand CMP processes.

R([C], P, v, Pv, %A or [A], d_A, Pads, T, ...)

References

E. Paul, J. Electrochem. Soc., 148, G355 (2001). A Model of Chemical Mechanical Polishing E. Paul, J. Electrochem. Soc., 148, G359 (2001). Application of a CMP Model to Tungsten CMP E. Paul, J. Electrochem. Soc., 149, G305 (2002). A Model of Chemical Mechanical Polishing II. Polishing Pressure and Velocity E. Paul and R. Vacassy, J. Electrochem. Soc., 150, G739 (2003). A Model of Chemical Mechanical Polishing III. Inhibitors. E. Paul, Mat. Res. Soc. Symp., 613, E1.4 (2000) A Model of Chemical Mechanical Polishing E. Paul, Mat. Res. Soc. Symp., 671, M4.8 (2001) A Model of Chemical Mechanical Polishing Modeling the Effects of Polishing Pressure and Speed on CMP Rates E. Paul and R. Vacassy, *Mat. Res. Soc. Symp.*, **767**, F1.2 (2003) A Model of Chemical Mechanical Polishing: The Role of Inhibitors E. Paul et al, Mat. Res. Soc. Symp., In Preparation (2004) A Model of Copper CMP E. Paul, Proc. Twentieth Int. VLSI Multilevel Interconnection Conf. VMIC, 277 (2003)

Modeling Chemical Mechanical Polishing E. Paul and A. Philipossian, *Proc. Ninth CMP-MIC Conf.*, 421 (2003) A CMP Model for Thermal Oxide ILD

