Nano-Scale Zirconia and Hafnia Dielectrics Grown by Atomic Layer Deposition: Crystallinity, Interface Structures and Electrical Properties

Hyoungsub Kim^{1,2,} Paul C. McIntyre¹, and Krishna C. Saraswat² ¹Materials Science and Engineering, Stanford University ²Electrical Engineering, Stanford University

Acknowledgement: Chi On Chui (EE, Stanford) Dr. Ann Marshall (MSE, Stanford) Prof. Susanne Stemmer (MSE, UCSB) Dr. Mann-Ho Cho (KRISS, KOREA) Funding: Stanford Graduate Fellowship (Mayfield Group), ERC

- Introduction
- Experimental
- ALD-ZrO₂ and HfO₂ on Silicon Substrates
- ALD-ZrO₂ and HfO₂ on Germanium Substrates
- Conclusions

The Need for High-k Gate Dielectrics

S.-H. Lo et al., IEEE Electron Device Lett. 18, 209 (1997).

- The scaling of metal-oxide-semiconductor (MOS) devices to sub-nanometer feature sizes requires **thin gate insulators**.
- Leakage current caused by electron tunneling increases exponentially with decreasing dielectrics thickness.
- Using high-k materials allows deposition of thick films with an effective thickness equivalent to thin SiO_2 films.

Benefits of High-ĸ Gate Dielectrics

Higher- κ film \Rightarrow thicker gate dielectric \Rightarrow lower leakage and

$$C_{ox} = \frac{\kappa \varepsilon_0 A}{t_{ox}} \implies t_{high-\kappa} = \left(\frac{\kappa_{high-\kappa}}{\kappa_{SiO_2}}\right) \cdot t_{SiO_2} \quad \text{power dissipation with}$$
 the same capacitance

What factors need to be included in choosing a high-*k* replacement?

Desirable High-*k* Gate Dielectric Properties

Material Properties	Electrical Properties	
<i>k</i> > 15; uniform	Equivalent Tox < 1 nm	
Thermally stable on Si (no need for barrier layer)	Low leakage current at the same equivalent Tox	
No reaction with electrode (stop B penetration if poly-Si)	No mobility degradation (low interface trap density)	

Material	SiO ₂	ZrO ₂ /HfO ₂	Silicate (Zr,Hf)
Dielectric Constant	3.9	~25	15 ~ 25
Band Gap (eV)	8.9	~5.7	~6

Atomic Layer Deposition

- Surface saturation controlled process
- Layer-by-layer deposition process
- Excellent film quality and step coverage

Experimental Conditions

Deposition system

Growth Kinetics of ALD-ZrO₂ and HfO₂

• Linear growth rate (sub-monolayer growth rate)

• Independent of precursor pulsing time

H. Kim ERC Teleseminar (May 06, 2004)

ALD of Metal Oxide Gate Dielectrics

• Excellent film quality and step coverage

AND

ENGINEERING

Outline

- Introduction
- Experimental
- <u>ALD-ZrO₂ and HfO₂ on Silicon Substrates</u>
 - Microstructural and electrical properties of ZrO_2 and HfO_2
 - Crystallization kinetics of ALD-HfO₂ using *in-situ* TEM
 - Effect of crystallization of ALD-HfO₂ on the electrical properties using *in-situ* and *ex-situ* annealing
 - Interface engineering using reactive metal electrodes
- ALD-ZrO₂ and HfO₂ on Germanium Substrates
- Conclusions

Microstructure of ALD-ZrO₂ on SiO₂/Si Substrate

Thin $ZrO_2 < 140A$

Thick $ZrO_2 > 140A$

• As-deposited ALD-ZrO₂ is polycrystalline.

- Thin ZrO₂ has "tetragonal" phase; monoclinic phase present in thicker films (> 140 Å).
- ZrO₂ is composed of small

Monoclinic +Tetragonal nanocrystallites.

Tetragonal

Microstructure of ALD-HfO₂ on SiO₂/Si Substrate

Fully crystallized HfO₂ (dark-field image)

- As-deposited ALD-HfO₂ is amorphous.
- Fully crystallized HfO₂ is a mixture of monoclinic and a small amount of tetragonal phase.

C-V Characteristics of ALD-ZrO₂ and HfO₂ on Si

- ZrO₂ / HfO₂ film were grown at 300°C on chemical SiO₂ (~15Å).
- Series Pt electrode/ZrO₂ or HfO₂/p-Si/Backside Al structure.
- Forming gas anneal (400°C, 30min, 4% H₂/N₂).
- Small CV hysteresis (< 30mV) for thicker films: indicates relatively low defect density of bulk traps produced by limiting Cl impurity content.

J-V Characteristics of ALD-ZrO₂ and HfO₂ on Si

• Lower dielectric constant observed for ALD-HfO₂, possibly caused by a lower film density, as determined by x-ray reflectivity.

• Low leakage (trap assisted tunneling current) cf. SiO₂ for a similar EOT.

• No difference of leakage current mechanism between polycrystalline ZrO_2 and amorphous HfO_2 according to the leakage current density data measured as a function of temperature and applied bias.

Crystallization of ALD-HfO₂: Thermal Annealing

• Crystallization observed at ~ 500°C in isothermal anneals; major phase is <u>monoclinic</u> mixed with <u>tetragonal</u> (30Å HfO₂ deposited at 300°C on 25Å thermal SiO₂).

15

Nano-crystalline Microstructure of ALD-HfO₂ after Thermal Annealing

16

• Very fine subgrain structure present with numerous twin boundaries, surrounded by large-angle grain boundaries.

In-Situ Crystallization Kinetics of ALD-HfO₂

- In-situ anneal at 520°C using 30Å HfO₂ on 25Å thermal SiO₂.
- Preliminary analysis shows 2-D (radial) growth with decreasing nucleation rate.
- Avrami isothermal transformation kinetics: $F = 1 \exp[-(kt)^n]$ n~2.2

17

Effects of HfO₂ Crystallization on Electrical Properties (*ex-situ* **annealing)**

- Sample structure : 3nm HfO₂ on 2.5nm thermal SiO₂.
- After 700°C, capacitance decreases due to the interfacial oxide growth. *
- No significant increase in trap assisted tunneling leakage current resulting from crystallization.

* Reagent-grade N_2 ambient contains ~ 1 ppm O

Effects of HfO₂ Crystallization on Electrical Properties (low pressure *in-situ* **annealing)**

- Sample structure : ~ 4 nm HfO₂ on 1.5 nm chemical SiO₂.
- Low pressure (~1.3 Tor) *in-situ* anneal to minimize interfacial SiO₂ growth.
- No significant increase in trap assisted tunneling leakage current resulting from crystallization.

Effects of HfO₂ Crystallization on Electrical Properties (low pressure *in-situ* **annealing)**

- Leakage current was measured at different measurement temperature.
- No difference of leakage current mechanism between amorphous and crystallized HfO₂.
- TAT(Trap-assisted tunneling) is the dominant leakage current mechanism. 2

Electrical Properties of High-*k* **Dielectrics with Different Metal Electrodes**

• Metal electrodes : Pt (50 nm), Al (100 nm), Pt(50 nm)/Ti(30 nm).

• Ti-electroded samples show 4 ~ 5 Å smaller EOT compared to Pt-electroded samples.

- Al-electroded samples have higher EOT due to the interfacial reaction between Al and highk gate dielectric.
- Reasonably low leakage current densities.

21

NEER

Interface Structures: Reactive Metal Electrodes

STEM : collaboration with Prof. Susanne Stemmer (UCSB)

8 Å-thick reacted layer (Al₂O₃) between Al and high-k gate dielectrics.
|ΔG_f(TiO₂)| < |ΔG_f(ZrO₂)| < |ΔGf(Al₂O₃)|
No interface oxide is observed for Tielectroded high-k gate stacks.
Clear interface between ZrO₂, HfO₂/Si substrate

EELS of Ti-Electroded ZrO₂

• No detectable Ti in ZrO₂: Ti solubility in ZrO₂ is < 4 at% @1200°C.¹

Significant amount of O in Ti metal electrode: O solid solubility in Ti is
 ~ 49 at% without forming a Ti-oxide.²

¹R. F. Domagala, S. R. Lyon, and R. Ruh, J. Am. Ceram. Soc. 56, 584 (1973).
²L. Murray and H. A. Wriedt, *Phase Diagrams of Binary Titanium Alloys* (ASM International, Ohio, 1987).

Thermodynamics of Ti-Electroded ZrO₂/HfO₂

Overall Process

$$\frac{C}{2}SiO_2 + Ti \rightarrow \frac{C}{2}Si(epi.) + TiO_C \quad \square \quad \Delta G_1^0(C)$$

- TiO_c is the Ti-O alloy and C is the concentration of oxygen in Ti
 - According to Duhem-Margules Eq., the integral $\Delta G_{f}(TiO_{c})$ vs. oxygen concentration in Ti

$$\Delta G_{f,TiO_C}^0 = (RT/2) \int_0^C \ln P_{O_2}^{eq} dC^1$$

$$\ln P_{O_2}^{eq} = 21.34 + 12.45C + 2\ln[C/(1-C)] - 131,200/T^2$$

Strong driving force to proceed for all temperatures of interest in semiconductor processing up to solid solubility of O in Ti

¹O. Kubaschewski, C. B. Alcock, and P. J. Spencer, *Materials Thermochemistry* (Pergamon, Oxford, 1993), p. 35.
²W. E. Wang and Y. S. Kim, *J. Nucl. Mater.* 270, 242 (1999); K. L. Komarek and M. Silver, in *Thermodynamics of Nuclear Materials* (IAEA, Vienna, 1962), p. 749.

Summary I

- Microstructural and electrical properties of ALD-ZrO₂ and HfO_2
 - as-deposited ALD-ZrO₂ (< 140 Å) is nanocrystalline in the tetragonal phase, and as-deposited ALD-HfO₂ is amorphous
 - the dielectric constant of ALD-ZrO₂ (~ 30) is higher than that of ALD-HfO₂ (~ 20)
 - the leakage current density at the same EOT is significantly lower for both oxides compared to SiO_2
- Crystallization and microstructural evolution of amorphous HfO₂
 - onset of crystallization during post-deposition anneal occurs at $\sim 500^\circ C$
 - fully crystallized HfO_2 is composed of monoclinic and tetragonal phases
 - isothermal crystallization kinetics consistent with 2-D growth from initial population of HfO_2 nuclei
- Effect of HfO₂ crystallization on its electrical properties
 - *ex-situ* and *in-situ* annealing study showed negligible effect of microstructural change on the leakage current density and conduction mechanism
 - bulk or interfacial defects other than grain boundaries may control leakage

Summary I

- Interface engineering of high-*k* gate stack using a reactive metal electrode
 - Ti-electroded samples show lower EOT due to the removal of interfacial layer
 - Al-electrodes react with ZrO_2 and form an Al_2O_3 layer having a low dielectric constant at the dielectric/top electrode interface
 - Ti overlayers having a very high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO_2 and reducing the interface layer thickness in a controllable fashion
 - any reduction of ZrO₂ by Ti does not degrade MOSCAP electrical properties

Outline

- Introduction
- Experimental
- ALD-ZrO₂ and HfO₂ on Silicon Substrates
- <u>ALD-ZrO₂ and HfO₂ on Germanium Substrates</u>
 - Locally epitaxial growth of ZrO₂ on HF-cleaned Ge
 - ALD-ZrO₂ and HfO₂ on Ge with different surface treatments
- Conclusions

Benefits of Ge Substrates

Electronic Properties:

- More symmetric and higher carrier mobilities (low-field)
- => more efficient source carrier injection due to lighter effective mass
- => decrease of CMOS gate delay:

$$\frac{C_{LOAD}V_{DD}}{I_{DS}} = \frac{L_{gate} \times V_{DD}}{(V_{DD} - V_T) \times V_{inj}}$$

Integration Problem:

• Lack of thermally stable and high quality gate dielectric (Ge-oxide)

(Sze, Phys. of Semicond. Devs. 2nd Ed., p.46, 1981)

Possibility of better performance results by combining high-k gate dielectric and Ge substrate ?

Surface Cleaning and Stability of GeO_x

- Common hexagonal phase of GeO₂ is water soluble and volatile
- H₂O removes GeO₂ but not GeO
- GeO_x can be removed in vacuum at temperatures above 430°C

29

ENGINEERING

AND

ALD-ZrO₂ on HF-last Ge Substrate

- ALD-ZrO₂ (~55Å) was grown on vapor HF cleaned Ge (100)
- No interfacial layer and local epitaxial growth were observed
- One interfacial dislocation per every 10 (111) planes: matches with lattice mismatch between ZrO_2 and Ge (~10 %).

30

a(tet-ZrO₂)=5.07Å, a(Ge)=5.657Å

Epitaxial Relationship between ZrO₂ and Ge

• Majority of film has the epitaxial orientation relationship (001) [100] ZrO_2 // (001) [100] Ge, (111) [111] ZrO_2 // (111) [111] Ge ; also a polycrystalline component

• Tetragonal or cubic phase (ALD-ZrO₂ on Si is tetragonal)

C-V Charactersitics of ALD-ZrO₂ on Ge

• High dissipation factor and frequency

dispersion inhibit obtaining accurate EOT.

- EOT was approximated from 10kHz CV data due to the high frequency dispersion.
- Large hysteresis and frequency dispersion due to high defect density.
- Increase of inversion capacitance may result from the increase of minority carrier generation.

H. Kim ERC Teleseminar (May 06, 2004)

J-V Charactersitics of ALD-ZrO₂ on Ge

• ZrO₂ on Ge samples show a slightly higher leakage current behavior compared to same physical thickness ZrO₂ on Si.

• Significantly lower leakage current considering the reduced EOT, which results from the absence of a thick dielectric/substrate interfacial oxide layer.

• The breakdown field is quite small (< 5 MV/cm).

C-V Characteristics of HfO₂/Nitrided Ge

- RTP nitridation : NH₃, 60sec with different temperatures after HF stripping of Ge
- Negligible hysteresis and frequency dispersion.
- The increase of minority carrier generation is efficiently suppressed.
- Excessive nitrogen incorporation increases the density of N-related interface defect states.

J-V and Microstructure of HfO₂/Nitrided Ge

- Nitridation formed a thin (11 ~ 12 Å) interfacial oxide (GeO_xN_y).
- Smooth and uniform growth of ALD-HfO₂ on a nitrided Ge.
- Nitridation temperature does not have an effect on the leakage current.
- Leakage current density is similar with the HfO₂/Si gate stack at the same EOT.

MEIS Analysis of ALD-HfO₂ on Nitrided Ge

• Distinctive diffusion of Hf atoms into the substrate interface is seen without a barrier layer (GeO_xN_y) present.

36

ENGINEERING

• Interfacial GeO_xN_y acts as a diffusion barrier for metal impurities. $_{\Gamma}$

Summary II

- ALD-ZrO₂ on HF-last Ge grows with locally-epitaxial relationship
 - gate dielectric/substrate interface appears nearly atomically-abrupt
 - (001)/<100> ZrO₂ // (001)/<100> Ge and (111)/<111> ZrO₂ // (111)/<111> Ge orientation relationship
 - no observable interfacial oxide was detected using cross-sectional TEM and XPS depth profiling
- Promising electrical properties with ALD-HfO₂ on nitrided Ge
 - HF-cleaning, H₂O-cleaning, chemical oxide consistently show large hysteresis, frequency dispersion, and inversion capacitance increase
 - negligible hysteresis and frequency dispersion are obtained through direct surface nitridation of Ge before high-*k* deposition
 - leakage current is comparable to that of high-*k*/Si
 - interfacial GeO_xN_y layer is acting as a diffusion barrier for metal impurities
 - large amount of nitrogen generates N-related defects at the interface

Conclusions

• A laboratory-scale ALD system using metal chloride and H_2O precursors was built and ZrO_2/HfO_2 deposition processes were optimized.

• Microstructural and electrical properties of ALD- ZrO_2 and HfO_2 on Si were characterized and compared.

• Crystallization kinetics of ALD-HfO₂ and the effects of crystallization on gate stack electrical properties were studied.

• A new interface engineering technique using reactive metal electrodes proved the possibility of controllable removal of dielectric/silicon interface layers.

• High-*k* dielectrics were applied to Ge substrates and improved the electrical properties when an oxynitride interface layer was present.

• Various other applications of ALD high-*k* films, such as nanolaminates, CNT transistor, Ge-nanowire transistor, and area-selective ALD were demonstrated.