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Introduction

e Undercutting causes particle removal by isotropic
etching of the substrate on which the particle adheres

« Adhesion force can be approximated as the sum of
the van der Waals force and the electrostatic double
layer force

e Particle iIs removed when the net adhesion force iIs
repulsive -
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Goal

* Provide a scientific basis for undercut cleaning

— Interpret cleaning rates in terms of measurable

systems parameters

— Develop general approach such that extension to

Include hydrodynamics, megasonics possible

— To facilitate interpretation, focus on model system

« Micron-scale polystyrene latex adhering to SiO,




Overall Approach
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The van der Waals Force Model
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Theory — van der Waals Force
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FFT Model for surfaces

Histogram Comparing Predicted Adhesion Forces
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Fourier transform equation:
f(k)= [ f(x)e ™ dx

Fourier transform of surface
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Measurement of van der Waals Force
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The Model System

d
FE A
RS — Vo F,=EDL Force
\\I\ F = VDW force
\
s \ Particle a, = Contact radius
/
Substrate /// hy=0.4 nm
l hg e B O d = Particle diameter
v FVd
2a,

« Rough, deformable spherical particle on a rough surface

 Particle deforms elastically — circular region of contact

 Particle is assumed to have attained equilibrium deformation




The Undercut Removal Model
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The Undercut Removal Model
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Particle undergoes
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Etch rate model

Fuaw >> Fe
/= — | Undercut — due to
Fvaw ~ Fe isotropic wet etching
N Removal criterion
| — 5
Foaw < Fe using force balance

Two competing forces

» van der Waals force (F, )

* Electrostatic double layer force

(Fepr)




Electrostatic Double Layer Force

~ d = Particle diameter
Cegdy? ) ke [ 2wy,

F, = : : —e h = Particle-surface separation distance

4 1—e wf, +y’

¢ = Medium dielectric constant
y = Zeta potential ( f(IpH) )

b | |
F t 4 j FE (h( x)‘t )dx Kk = Reciprocal double-layer thickness
a

E .total

=F

E ,deform

t I = Medium ionic strength

= Electrostatic double layer (EDL) force

E,total

y - can be attractive or repulsive
X
» EDL Force is a function of:

- particle-surface separation distance
F

E,deform

—h(x)

- system Chemistry

- particle, surface zeta potentials




Geometry of the System
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Undercut Removal
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Determination of Etch Rate (SiO, in 20:1 BHF)

) ol - System Kinetics’

K\[HF]=[H"][F]

EO'Z | K, [HF, |=|HF || F ]
"% 0 2 4 o 8 10 12 14 1

K, =13x107
K, =0.104
A=25B=9.66 C=-0.14

Etch Rate = A[HF 1+ B[HF; ]+ C

* Monk et al. Thin Solid Films, 232, 1 (1993) Ky 5(’")"
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Particle Removal by Undercut Etching
 Etch rate of TEOS-sourced silicon dioxide in 20:1 BHF = R = 31nm/min

« Etching was carried out in excess of BHF — no mass transport limitations
» Undercut etching results in —

- Decrease in contact area (deformed region)
a(t) = instantaneous contact area

a(t) =a, — Rt a, = equilibrium contact area

- Increase in particle — surface separation distance

. h(t) = instantaneous separation distance
h(t) - hO + R h, = initial separation distance

« Removal occurs at a given a(t) and h(t) for which F g, < Fg




Measurement of Electrokinetic Potentials
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Dependence of Removal on pH

4 6

pH

8

10

12

B PSL spheres

-10 @® Silicon Dioxide surface =
g 20
2 Zeta potentials were measured
g °¢ for a 1.1 electrolyte system
o
8 -40
N
-50
-6 0
280
250
@ 200 _ _
o Predicted removal time for
F 150 15 pm PSL spheres on TEOS-
© - . .
3 sourced silicon dioxide surface
£ 100
e
50
0 ,}jﬂp rb:".r
'_,f_\l-'-’l




Removal Experiments

O o A Pre-Etch Wafer Scan

Foaw >> Fe \
O Removal Statistics
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Experimental Procedure

e 7 and 15 um PSL spheres were spray deposited onto 200mm
wafers with TEOS-sourced SiO,

» Particles were allowed to settle for 24 hrs on the surface to allow
them to deform

* Pre-Etch scan of the wafer surface was obtained using a Tencor
Surfscan SP1 system at SEZ, America

 The wafers were immersed in 20:1 BHF solution at 25 °C for
various etch times. The etch bath was stagnant to avoid particle
removal due to hydrodynamic forces

» Post-Etch scans were obtained using the Surfscan system and
the percentage of particles adhering was determined
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Effect of Immersion and Short Etch Time
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Model Validation (15 um PSL)
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Model Validation (7 um PSL)
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Conclusions

 Particle removal highly dependent on adhesion
through

- Particle size distribution
- Roughness

« Zeta potentials of the particle and surface play an
Important role in determining ease of particle removal

e Undercutting results in increased particle-surface
separation distance and decreased particle-surface
contact area

- Results In reduction of net adhesion force

* Predictions from the undercut removal model agree
well with experimental data
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