scCO₂ Processing Methods for ESH Friendly Lithography

Christopher K. Ober

Materials Science and Engineering, Cornell University, Ithaca, NY 14853

Corneli

Collaborators & Support

Advanced Photoresists

Dr. Young-Je Kwark, Cornell Dr. Will Conley, Motorola Dr. Karen Gleason, MIT Jesse Mao, MIT Dr. N. Sundararajan, Intel

Funding

SRC Intel International Sematech National Science Foundation Nanobiotechnology Cente ONR Air Products

Facilities

Cornell Nanofabrication Facility Cornell High Energy Synchrotron Source Junyan Dai, Cornell Mr. Katsuji Doki, JSR Dr. J. P. Bravo, Cornell Dr. Vaishali Vohra, Shipley

Making the Pattern

- Crosslinking
- Chain scission
- Polarity change

International Technology Roadmap for Semiconductors

міт

CORNELL

Performance Issues for NGL Lithography

- Possible increased role of fluoropolymers
 - Transparency at 193 nm and 157 nm
 - Effect of aqueous developers on pattern collapse
 - Pattern profiles demand low viscosity, low surface energy developer
- Non-polar resists for EUV lithography
- High resolution development
- Environmental issues
 - Release of TMAH
 - Water reuse

– PAG use

Supercritical CO₂ as a Developer

	GAS	S Su	Supercritical Fluid		Liquid	
	P=0.1 M T= 15	<mark>//Pa</mark> Tc, °C	Pc Tc,	4Pc P=0.1 T= 1	MPa 5 °C	
Density	0.0006	- 0.2-	0.4-	0.6-		
Viscosity	/ <u>10-30</u>	10-30	30-9	200-3	000	
μPa-s		0.7.4	0-3 0.0		0-5	
Diffusion cm ² /s	0.1- 0.4	0./x1	0° 0.2x'	10° 0.2x1 2.0x1	0 ⁻⁵	

High and variable density

- Dissolution selectivity can be manipulated
- Tunable solvating power
- Higher diffusion coefficient than liquid

Accurate and rapid development

Low viscosity: comparable to gas

CORNELI

- No surface tension
- Pattern collapse of features avoidable

NTT Process - Avoiding Pattern Collapse

- Use CO₂ to replace water or polar solvents
- Reduce/ eliminate capillary forces that lead to pattern collapse
- Combinations of N₂ and CO₂ used in successful processing
- Remarkably fine features possible

Photoresist Development

Questions about scCO₂ in Lithography

- Where can it be used?
- Process time how does pressurization impact cycle time?
- Costs are they comparable to solvent/water process costs?
- Recycling vs disposal?
- Is it really an ESH improvement?
 - Cosolvents
- Positive tone vs. negative tone?
- New "disruptive" ideas?

Patterning Fluoropolymers in SCF CO₂

N. Sundararajan, S. Yang, J. Wang, K. Ogino, S. Valiyaveettil, C. K. Ober, S. K. Obendorf and R. D. Allen, "Supercritical CO₂ Processing for Sub-micron Imaging of Fluoropolymers", *Chem. Mater.*, 2000, **12**, 41-48.

CORNELL

Supercritical CO₂ Developable Photoresist

• Imaging Mechanism: negative-tone image

- Resist preparation and SC CO₂ development at Cornell
- 193 nm Exposure at IBM Almaden

Measurement of Film Dissolution

Principles of Interferometry

CORNELI

Assumptions:

- •Non-swelling
- •One optically distinct moving boundary
- •Film dissolves at constant rate

- <u>scCO₂ development</u>
- Swelling is expected
- Fluid equilibration, swelling, and dissolution occur simultaneously
- Density and refractive index of solvent vary with P, T
- 7/8" thick quartz glass window

A T

Dissolution Studies with SCFCO₂

(Experimental Setup)

MIT

Corneli

Pham, Rao, Ober, J. Supercritical Fluids, (2004) in press.

Time varying rates Complete development of film

MIT

- Very slow rate of dissolution
- Incomplete development

Dissolution Rate, Completeness

Dissolution Rate vs. Pressure

Dissolution Rate vs. Thickness

- DRM can also be used for cloud-point detection in solubility studies

Cornell

Developing/ Drying Combined

• Use CO₂ to replace water or polar solvents

мп

- Reduce/ eliminate capillary forces that lead to pattern collapse
- Projected improvement for developing fine features

Corneli

DESIRE for Positive-tone CO₂ Development

Silylated Positive-tone scCO₂ Developed Resist

MIT

Negative-tone features ~100nm Can we achieve positive-tone for block copolymers?

Corneli

NGL EUV Resists with scCO₂

Negative tone EUV resist ٠

MIT

- Insoluble in pure supercritical CO₂ ٠
- Soluble in scCO₂ when cosolvents ٠ are added to supercritical fluid.

Poly(trimethylsilylstyrene-co-chloromethylstyrene)

m = 90, n = 10

 $P = 5000 \text{ psi}, T = 45 \text{ }^{\circ}\text{C}, t = 10 \text{ mins}$

SCCO2 / EUV RESIST / ORGANIC SOLVENT					
Organic Solvent	Amount Added	Effect		0.2	
Tetrahydrofuran (THF) (10 min)	2 vol%	Film removed		0.3μm	<mark>0.5</mark> µ
Tetrahydrofuran (THF) (5 min)	2 vol%	Film removed			
Tetrahydrofuran (THF) (1 min)	2 vol%	Film removed			
Isopropanol (IPA) (10 min)	6 vol%	Film removed			ORDERED STOLEN
Isopropanol (IPA) (10 min)	2 vol%	Clouding of film			
Ethanol (EtOH) (10 min)	2 vol%	No effect			
Methanol (MeOH) (10 min)	2 vol%	No effect			
					Co

Goal: Simplified Lithographic Processing

Low- κ Strategy

Low- κ candidates	FC Material	<u>K</u>
≻doped oxides.	Bulk PTFE	2.1
 fluorinated glasses. porous films. air gaps. 	$(CF_2CF_2)_n$ a-C:F (Endo, NEC)	2.1-2.5
I Must be compatible with Damas	a-C:F,H	2.2-3.3
% porosity to reach κ ~ SiO ₂ 55 – 65	y ~ 2 (Theil, HP) FLAC (Mountsier, Novellus	2.0-2.5
hydrocarbon polymer 40 – 50	FDLC (Grill, IBM)	2.5-2.7
fluorocarbon polymer 0	CF _x (Akahori, TEL)	2.5
	SPEEDFILM (Rosenmayer, Gore)	1.7-2.0

E-beam Resist Developable in scCO₂

Addition of Modifiers to scCO₂

- Small amounts of cosolvents added to supercritical fluid drastically change solvating power
 ¹⁸1
 - Increases solvent density (liquids at R.T.)
 - May increase polarity of fluid
 - Specific interaction with a comonomer

Zhang, et al. Chem. Eur. J. 2002, 8(22). 5107-11.

The Cosolvent Effect

Questions Being Addressed

- Fundamental relationships between resist architecture and ۲ solubility in $scCO_2$.
 - Groups

MIT

- Copolymers
- Regions of cosolvent miscibility •
- Cosolvent mixing times •
- Behavior in cosolvents •

Summary

- scCO₂ is excellent high resolution developer
 - Avoids pattern collapse
 - Environmental benefit
 - Costs/process time/performance all promising
- scCO₂ optimized resists CAN produce sub-100 nm patterns
 - Architecture matters
 - Blocks more effective than random polymers
 - Adhesion & development
- Positive tone resists demonstrated
- All dry lithography (CVD/scCO₂) demonstrated

