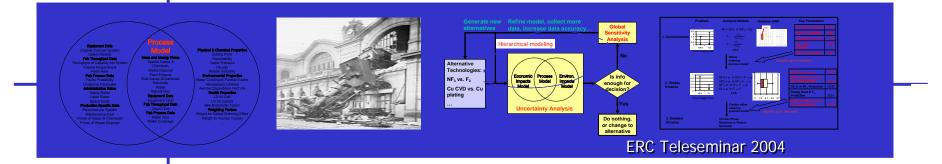
Integrating Environmental Considerations into Technology Selections Under Uncertainty

Y. Nina Chen (yuechen@alum.mit.edu) Gregory J. McRae Karen K. Gleason

MIT – Chemical Engineering



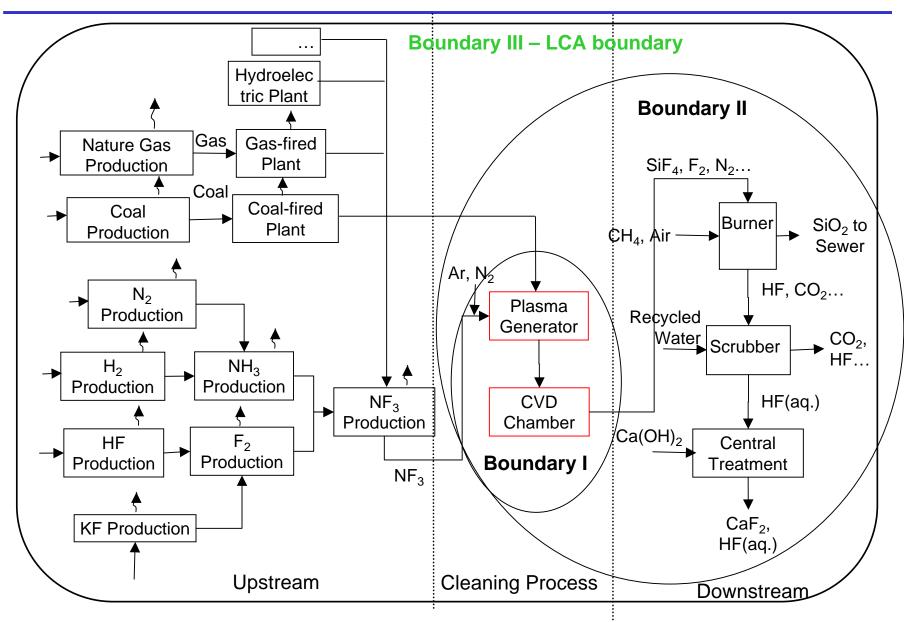
Why are Technology Choices Complex?

Example: Choosing a chamber cleaning gas (NF₃ vs. F₂?)

Decision Criteria	NF ₃	F ₂	Reference
Fluorine usage rate at the same etch rate (mole/min)	0.15	0.11	This work
Cost/mole of Fluorine	\$2	\$0.8	[1, 2]
LCA Global Warming Effect (kg CO ₂ equivalent/kg)	3.3	2.4	This work
Toxicity LC ₅₀ (ppm)	6700	180	[3,4]
Safety	Inert gas	Very reactive	

The Problem:How to choose between technologies- When there are conflicting decision criteria- Many uncertainties

Boundary of Life Cycle Analysis (LCA)



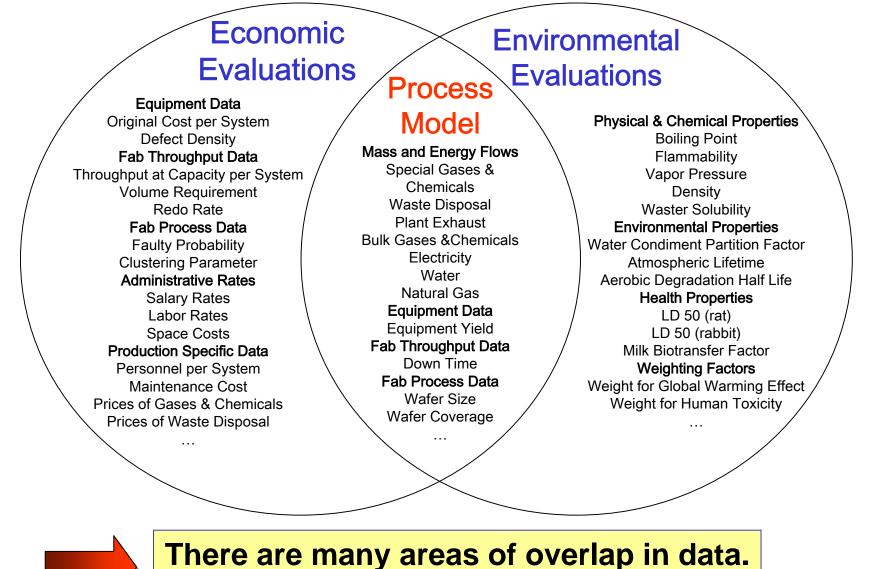
Challenges Facing Integration of Life Cycle Analysis to Process Design

- Large amount of data are required
- Large uncertainties are imbedded in environmental evaluation

Example: ~1 order of magnitude in air pollutant emission factors

- $2 \sim 3$ orders of magnitude in cancer toxicity indicators
- $3 \sim 6$ orders of magnitude in non-cancer toxicity indicators
- Limited time allowed for evaluations while regular LCA methods require large amount of time.
 - Typical innovation cycle of semiconductor industry: 2 years.
- Large disconnection in the tools used for ESH analysis and process / equipment design despite significant overlapping of information needed for both.

Overlapping Data Requirements



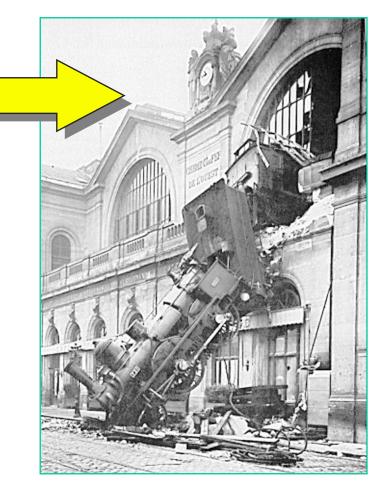
We need tools that can connect them.

Key Message – Outcomes are Important

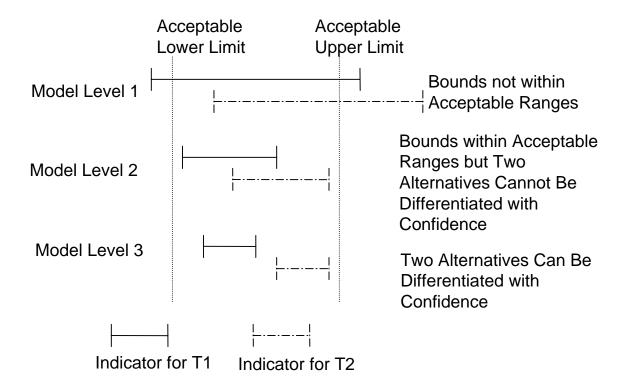
There are always uncertainties in technology evaluations, the real issue is to identify and act on those activities that influence outcomes.

Essence of "Decision Problem"

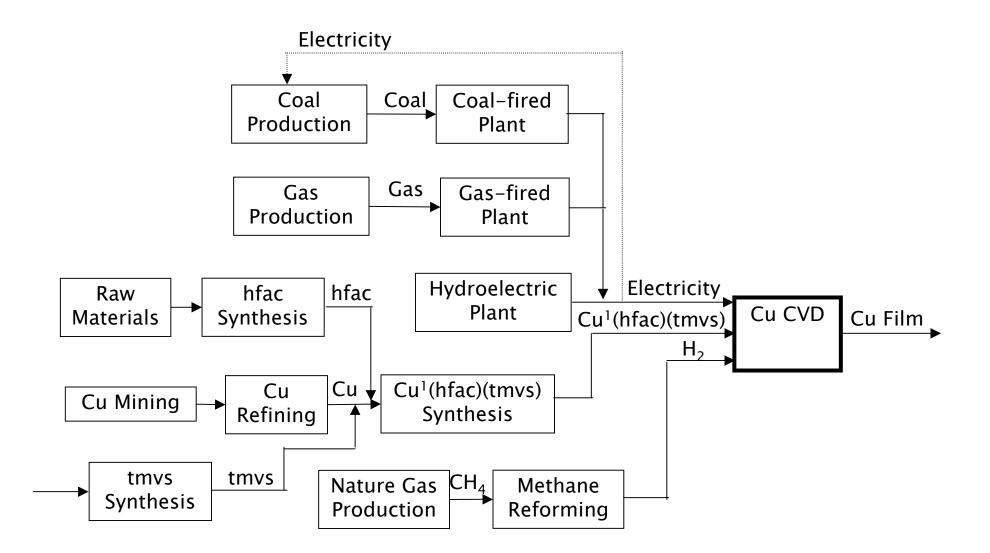
- How can we capture (efficiently) the uncertainties in outcomes given uncertainties in inputs?
- How much information do we need in order to make a decision?
- Where should we allocate resources (modeling, experiments,...) to reduce risk in decision outcomes?



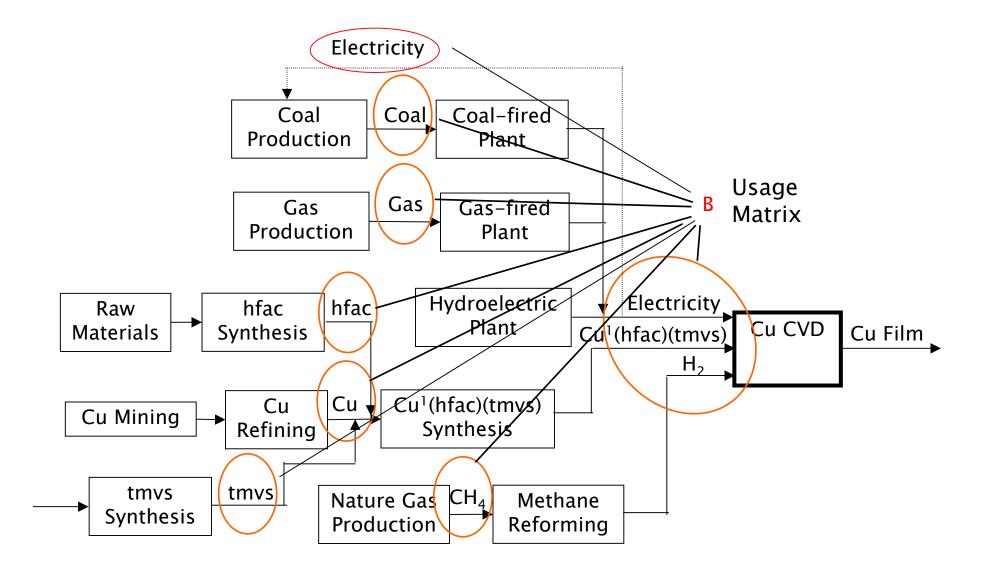
Hierarchical Modeling of Alternatives



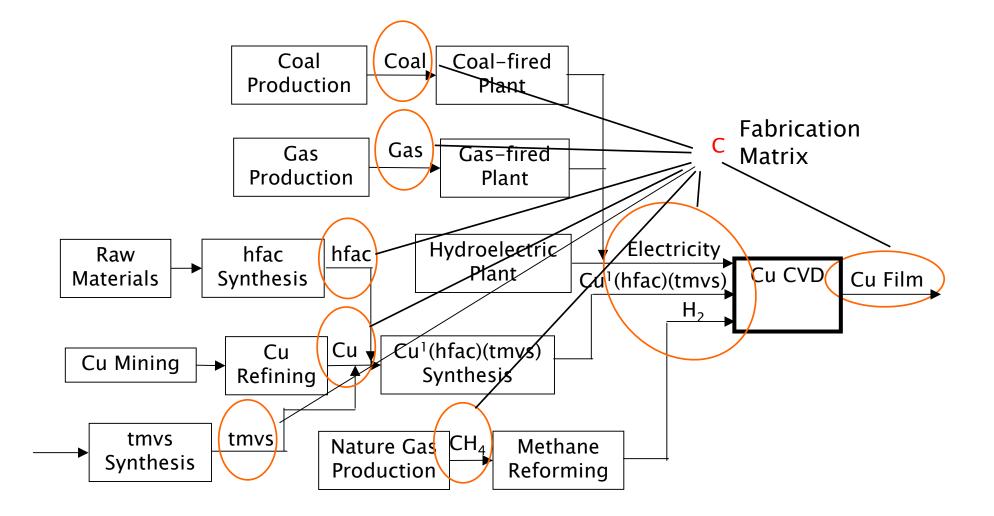
Process-Product Input Output LCA – an example



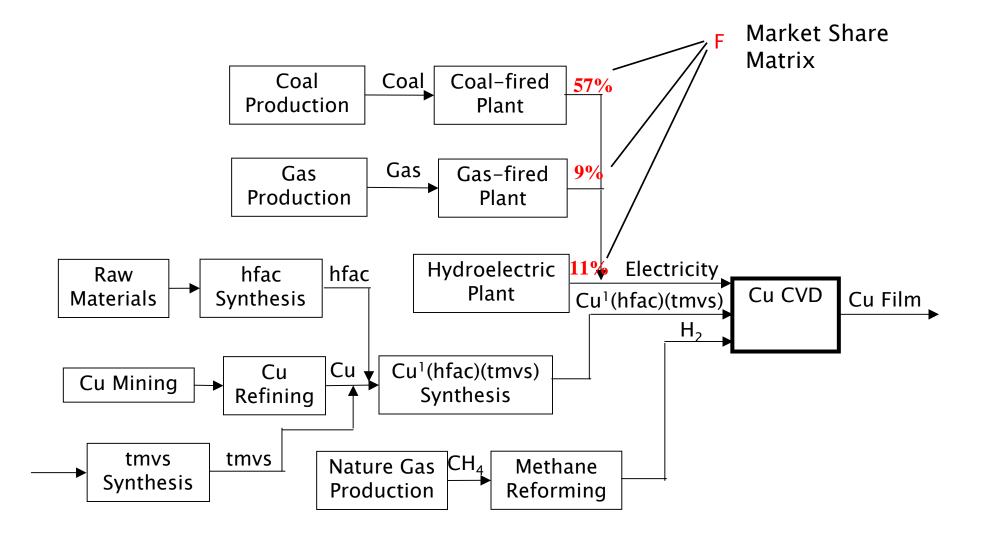
Model Input One: Usage Matrix (B)



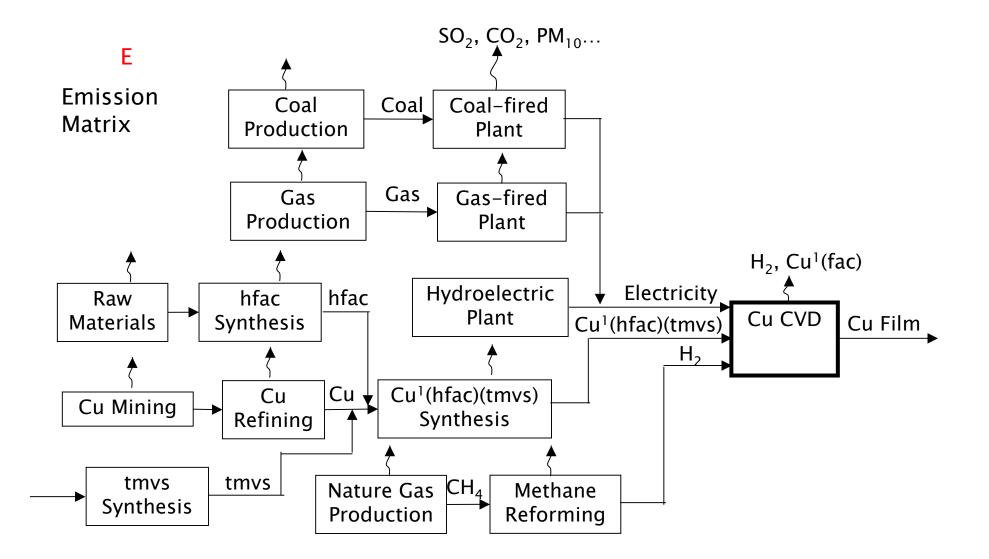
Model Input Two: Fabrication Matrix (C)



Model Input Three: Market Share Matrix (F)

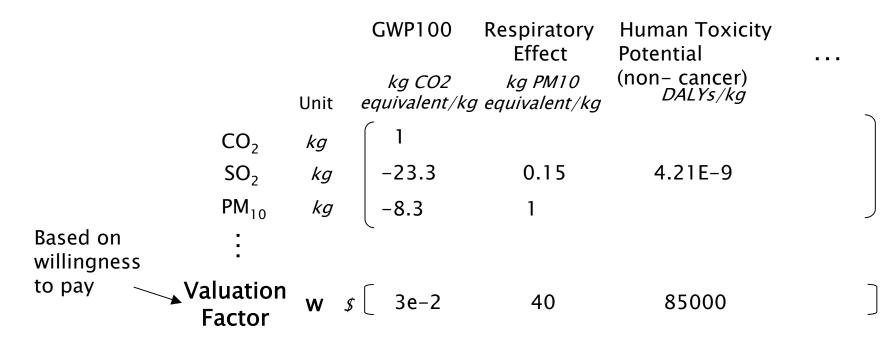


Model Input Four: Emission Matrix (E)



Model Input Five: Characterization Matrix (H)

Characterization matrix (H)



Mathematical Model

- Model Input Six: Price vector (p)
- Allocation matrix (G): for multiple product processes

$$G_{ji} = \begin{cases} \frac{p_i}{\sum_{k} C_{kj} p_k} & \forall C_{ij} \neq 0\\ 0 & \forall C_{ij} = 0 \end{cases}$$

G_{ji}: the amount of throughput of process j that is attributed to one unit of product i made in process j

Throughput matrix (D)

 $D_{ii} = F_{ii}G_{ii}$

D_{ji}: the amount of throughput of process j that is attributed to the demand of one unit of product I at current price and market share

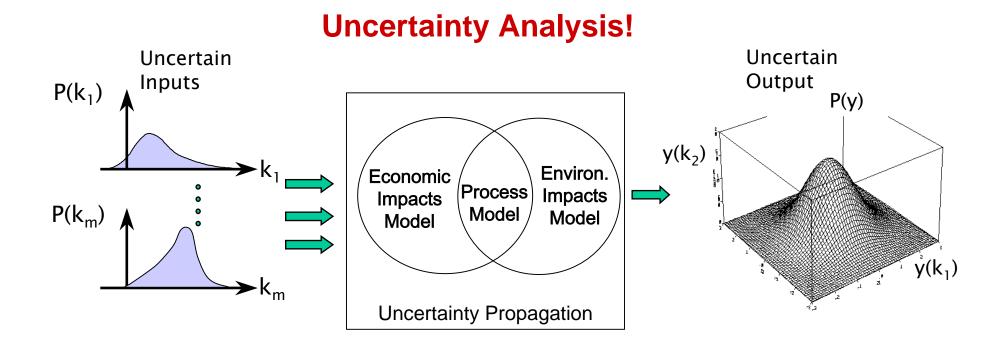
 Direct product requirement (q_{direct}) q_{direct} = (I + BD)d
 Total product requirements

 $q = (I + A_{prod} + A_{prod}A_{prod} + A_{prod}A_{prod}A_{prod} + ...)d = (I - A_{prod})^{-1}d$ where $A_{prod} \equiv BD$

Mathematical Model

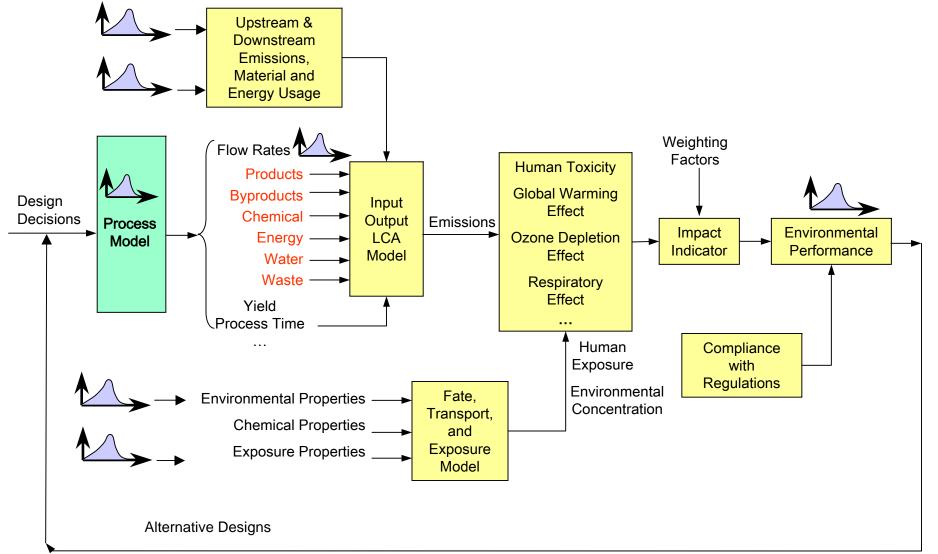
- Total process throughput requirements (x)
 x = Dq
- Life cycle environmental exchanges inventory (e)
 e = Ex
- Impact valuation by process (Ω_{process})
 Ω_{process} = Diag(x) E^T H w
- Impact valuation by emission ($\Omega_{emission}$) $\Omega_{emission} = Diag(e) H w$

Large Uncertainties in Inputs?



Uncertainty Analysis: Propagating Uncertainty through System Model

Components of life cycle analysis



Which Parameters Drive Outcome?

- Goal: identify parameters that contribute most to uncertainty in outputs in highly non-linear systems with large variations.
- Sensitivity Analysis Methods:
 - Local Sensitivity Analysis
 - Analysis of Variance (ANOVA) Assuming linearity
 - Linear Correlation Coefficients
 - Rank Correlation Coefficients Assuming monotone
 - Fourier Amplitude Sensitivity Test (FAST)
 - Deterministic Equivalent Modeling Method (DEMM)
 - Sobol's Method

- - Variance based, alobal

Linearity Based Methods

- Local sensitivity analysis
 - Function $Y = g(\underline{x}, \underline{\theta})$ is sufficiently smooth near the point $(\eta_{\underline{\theta}})$.

$$\sigma_{y}^{2} = \sum_{i=1}^{p} \left(\frac{\partial g}{\partial \theta_{i}} \Big|_{\eta_{\underline{\theta}}} \right)^{2} \sigma_{\theta_{i}}^{2} + \sum_{i=1}^{p} \sum_{j=1, j \neq i}^{p} \left(\frac{\partial g}{\partial \theta_{i}} \Big|_{\eta_{\underline{\theta}}} \right) \left(\frac{\partial g}{\partial \theta_{j}} \Big|_{\eta_{\underline{\theta}}} \right) r_{ij} \sigma_{\theta_{i}} \sigma_{\theta_{j}}$$
Contribution to variance if no correlation

- ANOVA
 - Variance of the output is decomposed into partial variances of increasing dimensionality
 - Based on linear regression: System satisfies the Gauss-Markov Conditions → Outputs are normally distributed

$$Y_{i_{i}i_{2}i_{3}} - Y_{g} = \sum_{k=1}^{3} M_{i_{k}} + \sum_{k=1,3>j>k}^{3} M_{i_{k}i_{j}} + M_{i_{i}i_{2}i_{3}}$$
Averaged over
three factors of Y Decomposed contribution of one factor, two factors, and three factors

Correlation Methods

- Linear Correlation Coefficients
 - Ratio of contribution to standard deviation to Y by θ_i alone and contribution of θ_i along with other θ_i s.

$$\rho_{\theta,Y} = E\left[\left(\frac{\theta - \mu_{\theta}}{\sigma_{\theta}}\right)\left(\frac{\theta - \mu_{Y}}{\sigma_{Y}}\right)\right] \qquad \qquad \therefore \rho_{\theta_{i},Y} = \frac{x_{i}\sigma_{\theta_{i}} + \sum_{j}x_{j}\frac{Cov(\theta_{i},\theta_{j})}{\sigma_{\theta_{i}}}}{\sigma_{Y}}$$

Rank Correlation Coefficients

- Rank-based rather than value based.
- No assume of linearity, but monotone.

$$r_{s} = \frac{\sum_{i=1}^{n} \left(rank(x_{i}) - \frac{n+1}{2} \right) \left(rank(y_{i}) - \frac{n+1}{2} \right)}{\frac{n(n+1)(n-1)}{12}}$$

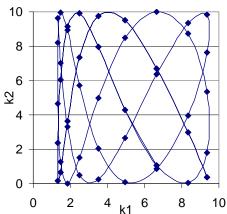
Variance Based Methods

- Similar to ANOVA, decompose variance into contributions by factors individually and collectively
 - No assumption of linearity or monotone
 - Model independent
 - Global
 - Example: One factor alone

$$\eta^{2} = \frac{\operatorname{Var}_{X} \operatorname{E}[Y \mid X]}{\operatorname{Var}[Y]}$$

- Fourier Amplitude Sensitivity Test (FAST)
 - Using a single variable search curve is used to cover the multidimensional space of the input factors

 $\begin{array}{ll} \text{Transformation of} & \quad \theta_i = F_i \left(\sin \omega_i s \right), \quad l = 1, 2, ..., p \\ \text{Transformation of} & \quad Y = \sum_{i=-\infty}^{\infty} \left[A_i \left(\underline{x} \right) \cos i s + B_i \left(\underline{x} \right) \sin i s \right]. \\ \text{Variance of Y} & \quad \sigma_Y^2 = 2 \sum_{i=1}^{\infty} \left\{ A_i^2 \left(\underline{x} \right) + B_i^2 \left(\underline{x} \right) \right\} \\ \text{Contribution of} & \quad \sigma_{\omega_i}^2 = 2 \sum_{p=1}^{\infty} \left\{ A_{p\omega_i}^2 \left(\underline{x} \right) + B_{p\omega_i}^2 \left(\underline{x} \right) \right\} \end{array}$



Deterministic Equivalent Modeling Method

 Directly approximating distribution of Y by a polynomial expansion

Transformation $\underline{\theta} = \underline{\theta}(\{\xi_i(\omega)\})$ Transformation $\hat{g}(\underline{\theta}) = \sum_{j=1}^{N} a_j Z_j(\{\xi_i(\omega)\})$ Decomposition of Output $\hat{g}(\theta_1,...,\theta_p) = g(\theta_1(\xi),...,\theta_p(\xi)) = g_0 + \sum_{i=1}^{p} g_{i1}L_1(\xi_i) + \sum_{i=0}^{p} g_{i2}L_2(\xi_i) + \sum_{i=0}^{p} \sum_{j=i}^{q} g_{i1j1}L_1(\xi_i)L_1(\xi_j)$ linear 2nd order bilinear $+ \sum_{i=0}^{p} g_{i3}L_3(\xi_i) + \sum_{i=0}^{p} \sum_{j=1}^{i-1} g_{i2j1}L_2(\xi_i)L_1(\xi_j) + \sum_{i=0}^{p} \sum_{j=1}^{i-1} g_{i1j2}L_1(\xi_i)L_2(\xi_j)$ 3rd order 2nd order in ξ_i , 1st in ξ_j 1st in ξ_i , 2nd in ξ_j $+ \sum_{i=0}^{p-2} \sum_{j=i+1}^{p-1} \sum_{k=j+1}^{p} g_{i1j1k1}L_1(\xi_i)L_1(\xi_j)L_1(\xi_k) + higher order terms$ trilinear

Calculating coefficients by forcing error of expansion at collocation points to zero or minimizing error over whole space of inputs

Sobol's Method

Integrating over other factors to obtain contribution of each factor

$$D_{i_{1}\cdots i_{s}} = \int_{0}^{1}\cdots \int_{0}^{1} g_{i_{1}\cdots i_{s}}^{2} \left(\theta_{i_{1}}\cdots \theta_{i_{s}}\right) f_{\theta_{i_{1}}\cdots \theta_{i_{s}}} \left(\theta_{i_{1}}\cdots \theta_{i_{s}}\right) d\theta_{i_{1}}\cdots d\theta_{i_{s}} \quad \text{Factor } \theta_{j\neq 1\dots i_{s}} \text{ are fixed.}$$

$$S_{i_{1}\dots i_{s}} = \frac{D_{i_{1}\dots i_{s}}}{D}$$

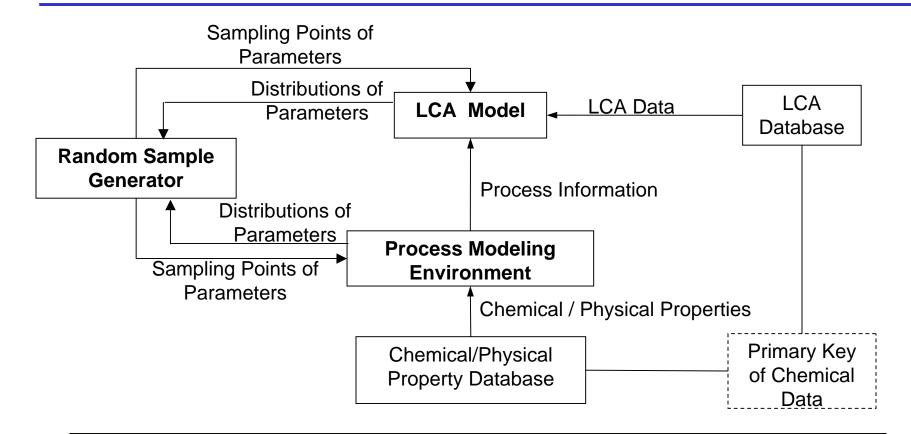
Global Sensitivity Indices (GSI) $S_{Ti} \equiv S_i + S_{i,ci} = 1 - S_{ci}$

GSI – total effect of variable θ_j, including fraction of variance accounted for by θ_j alone and fraction accounted by any combination of θ_j with remaining factors

Comparison of Methods

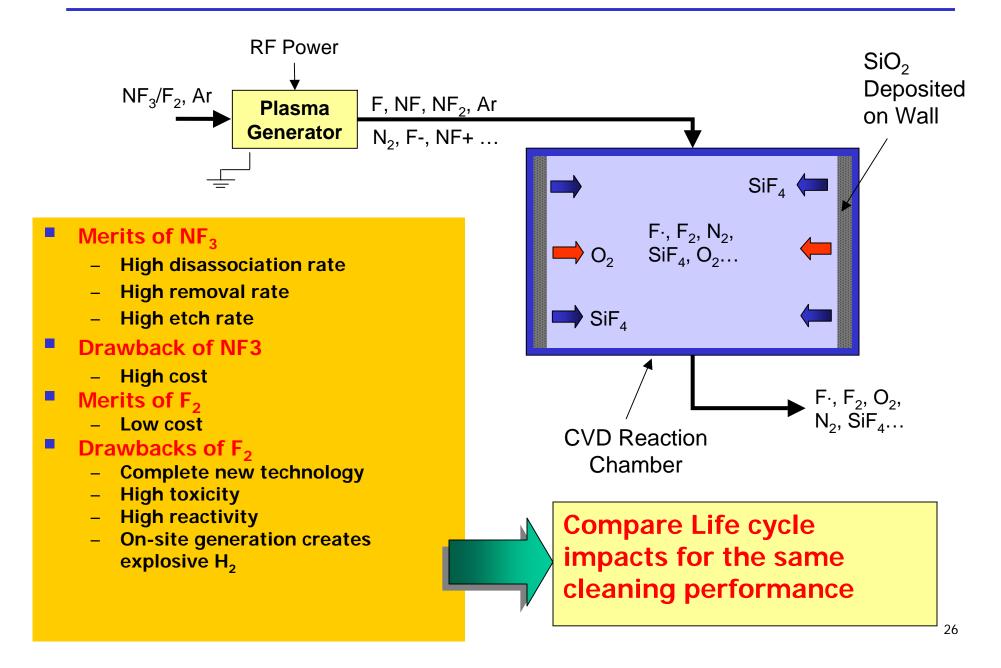
- Capturing global response with wide variation variance based methods
- Easiness to implement -- correlation methods
- Suggestion: to use correlation methods as a starting point for many inputs, then to use variance based methods for detailed, quantitative analysis.

Integration of Software for LCA and Process Modelling



- Advantages of this integrated system:
 - Reduced cost and time for developing a process modelling environment that is compatible with LCA from scratch.
 - Allows uncertainty analysis on both the LCA models, economic models (not shown here), and process models.

Case Study: Clean Chamber with NF₃ or F₂?



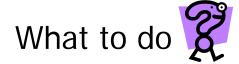
Modeling of Chamber Cleaning Processes

Driving forces of LCA impacts: Cleaning gas usages Energy consumptions

Cleaning Gases
$$N_{NF_3} = \frac{4N_{SO_2}}{3F\%_{NF_3}}, N_{F_2} = \frac{2N_{SO_2}}{F\%_{F_2}}$$

Energy $E_{NF_3} = \frac{N_{SO_2}E_{b_-NF_3}}{F\%_{NF_3}\xi_{E_-NF_3}} + tP_{plasma}, E_{F_2} = \frac{N_{SO_2}E_{b_-F_2}}{F\%_{F_2}\xi_{E_-NF_3}} + tP_{plasma}$
where for NF₃ cleaning $F\%_{NF_3} = (4 \cdot N_{SIF_4} + N_{HF})/(3 \cdot N_{NF_3}) \cdot 100\%_{F_2}$
 $F\%_{F_2} = (4 \cdot N_{SIF_4} + N_{HF})/(2 \cdot N_{F_2}) \cdot 100\%_{F_2}$

 Little process specific information is known for fluorine yield F%, energy yield ξ_E, and cleaning time t.



Process Modeling Hierarchy and Resource Needs

	Process Model Hierarchy	Distributions of Yield	Resources Needed
1	Simple stoichiometric yield		1
2	Lumped kinetics (3 reactions)		10
3	Detailed kinetics (60 reactions)		100
4	Model based experiments		1000

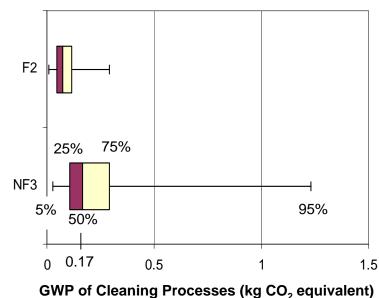
Distributions Used in Process and LCA

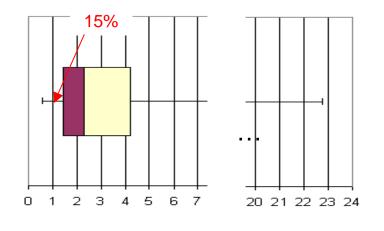
- Fluorine Utilization Yield
 F% ~ uniform(10⁻⁵, 0.6)
- Energy Utilization Yield $\xi_{E} \sim uniform(10^{-10}, 0.6)$
- Cleaning Time t(s) ~ uniform(6E⁻⁴, 1200)

- Examples of distributions of other variables
 - Environmental impact characterization factors: Lognormal, normal
 - Upstream resources consumption factors Lognormal, normal, triangular

Environmental Impacts from LCA

Comparison of the global warming potentials (GWP) of the two processes





Relative Ratio of GWP of NF3 and F2 Cleaning Processes

We can be 85% sure that the F_2 cleaning has lower a global warming impact than the NF₃ cleaning.

Do we still need a more detailed model?

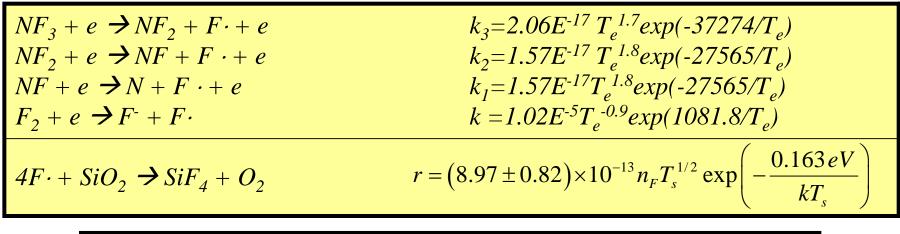
Important Parameters of Affecting Relative GWP

Parameter	Spearman Rank Correlation Coefficient
Fluorine Yield of NF ₃ Cleaning	-0.64
Fluorine Yield of F ₂ Cleaning	0.46
Cleaning Time t (s)	-0.28
Energy Yield of NF ₃ Cleaning	-0.20
Energy Yield of F ₂ Cleaning	0.12
NF ₃ Yield in NF ₃ Production from NH ₃ and HF	-0.11
H ₂ S Emission from Oil-Fired Power Plant (kg/ kW-h Energy)	-0.083
Electricity Used in Diesel Fuel Production (MJ/kg)	0.078
GWP of $C_2H_3CI_3$ (kg CO_2 equivalent/kg)	0.067
GWP of CH_2CI_2 (kg CO_2 equivalent/kg)	0.061

If we need more precise results, **process model** need to be refined!

Hierarchical Modeling – 2nd Process Modeling Level

- Lumped kinetics and Perfectly Stirred Tank Reactor model
- Key assumptions
 - Free electrons are generated mainly by ionization Ar+e --> Ar++2e
 - Electron loss and production are linear to electron concentration
 - Diffusion of electrons dominates the transport of electrons.

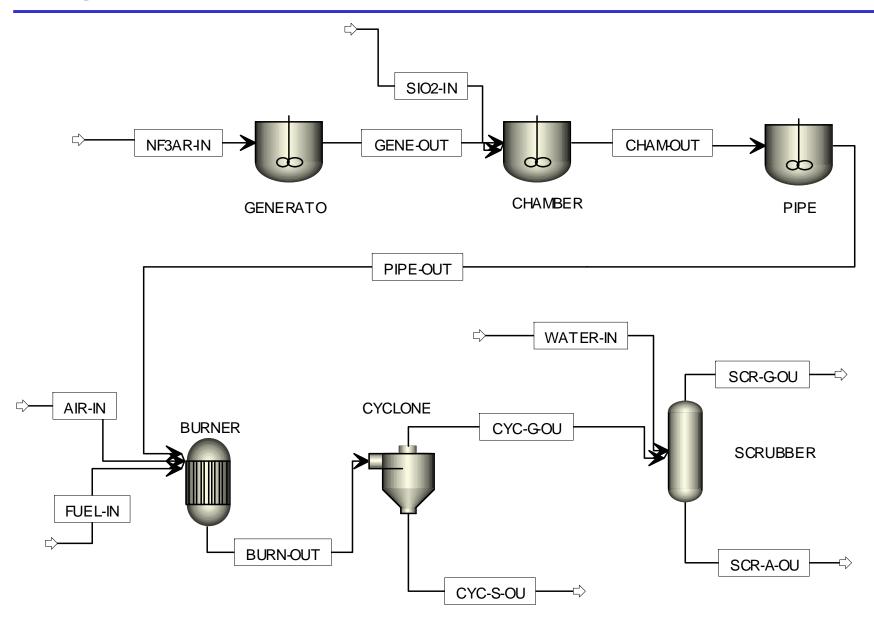


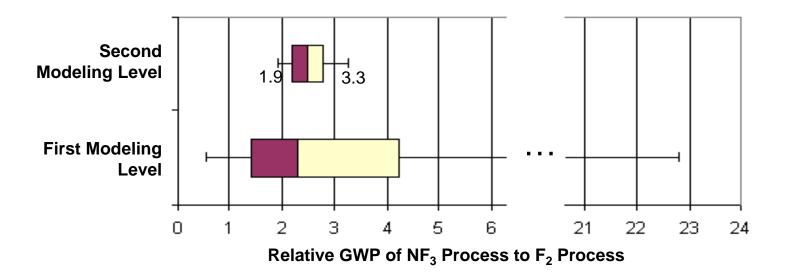
$$n_{F,NF_{3}} = \frac{\beta_{3}\tau n_{NF_{3},in}}{1+\beta_{3}\tau} + \frac{\beta_{2}\beta_{3}\tau^{2}n_{NF_{3},in}}{(1+\beta_{2}\tau)(1+\beta_{3}\tau)} + \frac{\beta_{1}\beta_{2}\beta_{3}\tau^{3}n_{NF_{3},in}}{(1+\beta_{1}\tau)(1+\beta_{2}\tau)(1+\beta_{3}\tau)}$$

$$n_{F,F_{2}} = \frac{\beta_{F_{2}}\tau n_{F_{2},in}}{1+\beta_{F_{2}}\tau}$$

$$\beta_{i} \equiv k_{i}n_{e}$$

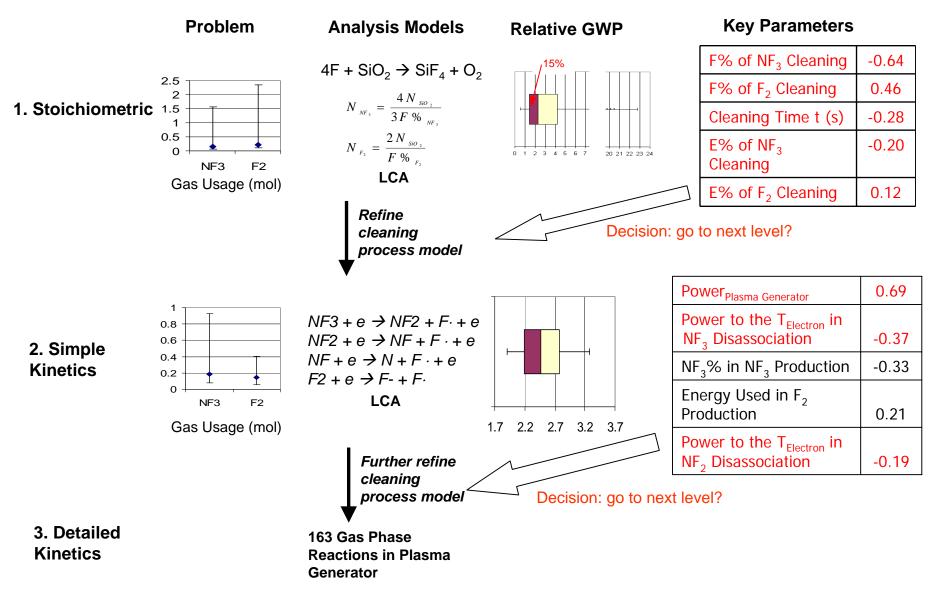
Aspen Plus Flow Sheet with Downstream Treatment

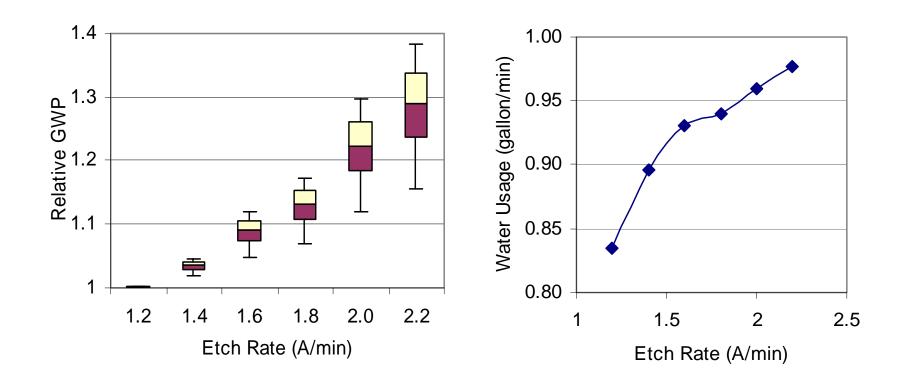




- 2~3 orders of magnitude of uncertainties in inputs does not necessarily leads to low confidence in decision
- Increase of modeling detail decreases the uncertainty of the outputs
- But the decision is still the same F₂ is better!
- Required confidence level should determine depth of analysis

Hierarchical Modeling Can Save Time and Money





Integrated system can also be used for studying how process design influences environmental impacts, downstream treatment design, and etc.

Conclusions

- Large uncertainty in the inputs does not necessarily lead to low confidence in decisions.
- Hierarchical modeling in combination with uncertainty analysis are efficient ways to support the decision making and resource allocation process.
- Integrated evaluation system facilitates the integration of environmental, economical, and technical evaluations.

UNCERTAINTY *≠* **IGNORANCE**

Acknowledgement

- Laura Losey, David Bouldin, Mike Kasner, Tim Yeakley, and Tina Gilliland Texas Instruments
- Larry Novak Novak Consulting, LLC
- Alejandro Cano-Ruiz and Pauline Ho Reaction Design
- Daren Dance WWK
- Joe Van Gompel BOC Edwards
- Holly Ho TSMC, Taiwan
- ERC Funding