Supercritical Fluid Technology for Semiconductor Device Fabrication: Deposition of Metals and Mesoporous Silicates from Carbon Dioxide

Jim Watkins

Department of Chemical Engineering University of Massachusetts Amherst, MA 01003

February 12, 2004

Can SCFs Play an Enabling Role in Device Fabrication?

SCFs are Ideal Solvents for Materials Chemistry and Processing in Confined Geometries

Reactive Deposition from SCFs for Device Fabrication Developments at UMass

Deposition Techniques for Seed and Fill

Vapor Phase Techniques <u>MOCVD</u>

- Step Coverage?
- Issues with Precursor Design, Fluorine
- Adhesion

 $Pd from Pd(hfac)_2$ on Si via CVD

(Bhaskaran, CVD 1997, 3, 85)

<u>ALD</u>

- Excellent Step Coverage
- Rate?

Chemical Fluid Deposition

Deposition via Reduction of Organometallics in Supercritical CO₂ ($T_c = 31$ °C, $P_c = 74$ bar)

Comparison of Reduction Media for Deposition of Metal Films

	Liquid	SCF (CFD)	Gas (CVD)
Density (g/cm^3)	1	0.1-1	10-3
Viscosity (Pa-S)	10-3	10-4 - 10-5	10-5
Diffusivity (cm ² /sec)	10-5	10-3	10-1
Precursor Conc. (mol/cm ³)	10-5	10-5	10-8
Hydrogen Conc. (mol/cm ³)	10-4	10-2	10-4
Surface Tension (Dynes/cm)	20-50	0	0
Deposition Temperature (⁰ C)	25-80	40-300	250 +
Fransport in Solution 🗖	Zero Surf	ace Tension 🗖 Ra	apid Diffusior

6

Cu Deposition - Familiar Chemistries from CVD

Reduction of Cu(II) Compounds

• $Cu(II)L_2$: $Cu(hfac)_2$, $Cu(tmhd)_2$

$$Cu(II)L_2 + H_2 \xrightarrow{\text{Reduction}} Cu + 2 HL$$

Thermal Disproportionation of Cu(I) Compounds

• Cu(I)LL': - Cu(hfac)(L') where L' = 2-butyne, COD, VTMS

7

Cold Wall CFD Reactor

Deposition via H_2 Reduction of Copper(II) β -diketonates in CO₂

 $Cu(tmhd)_2$ – An Attractive Precursor Not practical via CVD due to low volatility

Deposition on Pd-Seeded Si, TiN; Temperature < 225 °C Deposition on Si (native oxide), TiN, Ta, TaN; Temperature > 225 °C

Cu(tmhd)₂ Solubility in CO₂ at 50 ^oC

Copper Deposition by H₂ Reduction of Cu(tmhd)₂ on Pd-Seeded Si in CO₂ (200 ^oC)

•Exceptional Gap Fill

UMASS

(Science, 294, 141, 2001)

Copper Deposition by H_2 Reduction of Non-fluorinated Cu β -diketonates in CO₂ on Un-Seeded Ta

- Large Grains in Thick Films, No Seam, 2.0 $\mu\Omega\text{-cm}$
- Conformal Thin Films Viable Cu Seed Layers
- Excellent adhesion w/ surface pretreatment

Copper Deposition from Cu(II)(tmhd)₂

Co(tmhd)₃ - tris (2,2,6,6-tetramethyl 3,5-heptanedionato) cobalt(III)

 $CoCp_2$ - bis(cyclopentadienyl)cobalt (II)

(Hunde and Watkins, Chem. Mater., 2004, 16, 498)

Selective Co and Co(P) Caps on Cu, Post CMP Co(tmhd)₃ 300 °C, H₂ Reduction, P Source = TPP

(with J. Blackburn et al., Novellus, 2003 AMC Proceedings)

SEM

 Mag
 E-Beam
 FWD
 Spot

 200 kX
 10.0 kV
 5.515
 2

02/13/03

Optical

Selective Co

500 nm

030212-2. sel Co. T250.

Deposition of Phosphorous Doped Cobalt Films

- Triphenyl phosphine (TPP) was used as P source
- P doped Co films from $TPP + CoCp_2$ mixtures or $TPP + Co(tmhd)_3$ in SC CO₂
- Carbon free films with 4 -20 at % P were deposited on, Cu/TaN, native oxide of Si,TaN/Si substrates

Flexible Deposition System: Deposition of Ni from NiCp₂ in CO₂

Deposition of Ni/Pt Alloys from NiCp₂ + CODPt(CH₃)₂ in CO₂ 60 °C, 140 bar, Polyimide Substrate

18

Fabrication of Metal Posts Deposition of Gold in High Aspect Ratio Vias and Template Removal (just for fun)

Au by H₂-assisted CFD of Au(CH₃)₂(acac) at 125 °C and 200 bar

UMAS

Role of SCFs in Semiconductor Device Fabrication

Coordinated Self Assembly / Evaporation-Induced Self Assembly Good Control Over Local Structure

Issues

- Aging Periods / Presence of Excess ROH and H_2O
- Mutual Solubility of Template and Precursors
- Control of Pore Orientation, Long Range Order, Patterning Requires External Fields
- Structure Evolution and Network Formation are Coincident

Controlling Morphology in Block Copolymers

Key Parameters: block volume fraction, $f \rightarrow$ controls morphology degree of polymerization, $N \rightarrow$ controls domain size Flory Parameter, $\chi \rightarrow \chi N$ controls segregation

Our Approach to Mesoporous Materials

TEOS Solubility in Supercritical Carbon Dioxide

Why are SCFs Enabling?

- Template Dilation is Modest, Equilibrium Limited - template order is not disrupted
- Diffusion is Enhanced in Dilated Matrices
- Reagent Partitioning is Favorable
- Elimination of Excess Alcohol / Water from Reaction Media

 rapid condensation, no aging periods

CO₂ Sorption in PS and PEO at 65 °C


```
Partitioning of CODPtMe<sub>2</sub> between
CO<sub>2</sub> and CO<sub>2</sub>- Dilated PMP
```


Polymer/SCF Interactions CO₂ Sorption Homopolymer Systems

	Temperature (⁰ C)	χ
polystyrene	35	1.65
poly(vinyl methyl ether)	20	0.90
polyisoprenene	35	1.56
polybutadiene	25	1.62
poly(n-butyl methacrylate)	60	0.90

26

Phase Behavior of BCPs Dilated with Supercritical Fluids

ODTs => Sorption of SCFs can expand miscibility slightly via solvent screening (enthaplic effect)

LDOTs => Selective dilation drives segregation through a free volume (entropic effect)

Macromolecules **2003**, 36, 4029 *J. Polym. Sci. Polym. Phys.* in press *Macromolecules* **2002**, 35, 4056 *Macromolecules* **2000**, 33, 5143 *Macromolecules* **1999**, 32, 7737 *Macromolecules* **1999**, 32, 7907

For large χN and modest dilations BCPs remain strongly segregated

Real Time Measurements of Probe Diffusion in CO₂ – Dilated PS Films

High Pressure Fluorescence NRET

(Gupta et al., Macromolecules 2003)

Silica Sol - Gel Chemistry

Hydrolysis	$Si(OEt)_4 + H_2O \leftrightarrow Si(OEt)_3(OH) + EtOH$
	$Si(OEt)_3(OH) + H_2O \iff Si(OEt)_2(OH)_2 + EtOH$
	$Si(OEt)_2(OH)_2 + H_2O \leftrightarrow Si(OEt)(OH)_3 + EtOH$
	$Si(OEt)(OH)_3 + H_2O \leftrightarrow Si(OH)_4 + EtOH$
Condensation	2 Si $(OH)_4 \leftrightarrow (OH)_3$ Si - O - Si $(OH)_3 + H_2O$
Ethanolysis	$Si(OEt)_4 + Si(OEt)_3(OH) \leftrightarrow (OEt)_3Si - O - Si(OEt)_3$
	+ EtOH
Overall	$Si(OEt)_4 + 2H_2O \iff SiO_2 + 4EtOH$

- Extraction of Ethanol into CO₂ Drives Condensation Chemistry
- No Aging Periods, Rapid Synthesis

Synthesis of Mesoporous Silica – Generation 1 Precursor and Templates

Si Alkoxide

Tetraethylorthosilicate (TEOS), Others

Pluronic Surfactants	$[-CH_2-CH_2-O]_m - [CH_2-CH(CH_3)-O]_n [-CH_2-CH_2-O]_m$			
		Volume Fractions		
	m	n	PEO	PPO
Pluronic F127	100	65	0.68	0.32
Pluronic F108	133	50	0.784	0.216
Brij Surfactants		$C_nH_{2n+1}[-CH_2-CH_2-O]_m$		
			Volume Fractions	
	n	m	PE	PEO
Brij 76	18	10	0.41	0.59
Brij 78	18	20	0.258	0.742

Other Hydrophilic/Hydrophobic Block Copolymers

Brij 76 Template / TEOS Infusion 40 °C, 125 bar

TEM Microscopy – Post Calcination

X-Ray Diffraction: TEOS Infusion into Brij 76 films

3-D Hexagonal Spheres

Brij 76 Template / TEOS Infusion 60 °C, 123 bar

Transmission Electron Microscopy Post-Calcination

()

Fabrication of Thick Films – TEOS/ F108 Template, 60 °C, 123 bar

Fabrication of Films – TEOS/ F108 Template, 60 °C, 123 bar

UMAS

36

Fabrication of Thick Films – TEOS/ F127 Template

Cylindrical Morphology – Random Grains

(Pai et al., Science, 303, 507, 2004)

Organosilicates for Low k - TEOS Derivatives

Methyltriethoxysilane (MTES)

Bis(triethoxysilyl)methane (BTESM)

Ethyltriethoxysilane (ETES)

Bis(triethoxysilyl)ethane (BTESE)

F127 Template 40% MTES, 60% TEOS

F127 Template 40% MTES, 60% TEOS Post – Processed at Novellus

k = 2.11, Hardness = 0.75 GPa

Mesoporous ULK Films Post-Processed at Novellus – Initial Results

UMASS

CMP on Planar 200 mm Wafers at Novellus

What's Next? - Direct Preparation of Hierarchical Structures

Structural Control at the Local and Device Level is Relatively Easy in Block Copolymer Films / Melts - But Difficult in Metal Oxides

Ideally: Impart Structure to BCP Melt – Replicate in Oxide

Acknowledgments

<u>Alumni</u>

(Science, 2001)

Vijay RamachandraRao (Ph.D., Intel)
Jason Blackburn (Ph.D., Novellus)
Garth Brown (Ph.D - PSE, Columbian Chemical)
Danielle Ortelli (M.S., Exxon-Mobil)
Dr. David Long (Post-Doc, NRL)
Brian Vogt (Ph.D., NIST)
Ravi Gupta (Ph.D., Atofina)
Scott Fisher (Ph.D., GE)
Dr. Albertina Cabanas (Post-Doc, Universidad Complutense de Madrid)

Support

The David and Lucile Packard Foundation Universidad Complutense NSF Career Program CTS-9734177, GOALI CTS-0245002, NIRT CTS-0304159 Novellus Systems, Inc. NSF Materials Research Science and Engineering Center at UMass NSF Nanotechnology Initiative CTS-9811088 Camille and Henry Dreyfus Foundation Procter and Gamble - University Exploratory Research Program National Environmental Technology for Waste Prevention Institute Alza Corporation, 3M, Eastman Kodak, Xtalight, Inc.

