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Motivation

Motivation and Background

Microresonator

20 Microresonators

Possible Applications of Tactile MEMS:
e Communication device for divers, pilots, soldier, blind

e Diagnostic device for people with Central Nerve System Injury

e Applications: “quite pager”, “remote touch”
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Motivation and Background

Tactile Display
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Sensory lllusion Phenomenon

Motivation and Background

Visual @ - phenomenon

two separated lights flash
sequentially using appropriate on-
and-off sequences, the viewer
perceives a single light moving
smoothly from one light position to
the other, rather than two lights
flashing on-and-off, one after the
other
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Required Actuator Performance

Motivation and Background

Settings on solenoid tactile illusion-producing device
(Data from Dr. Gonzales)

Parameter

No. of vibrations

Required force
Required displacement

Solenoid on-time
Solenoid off-time

Solenoid delay

1/28/2004

Value

Total number of protrusions of

each solenoid while activated = 5

>10mN

>20pm

Time of core protrusion for

each vibration of each solenoid = 10 ms
Time of no active core protrusion for

each vibration cycle = 10 ms

Time between end of last solenoid vibration
and onset of next solenoid vibration = 5 ms




Micro-Mechanical Switch:
Thermally Actuated Switch

Micro switch open Micro switch closed
| I
v 2k

Thermal actuator

Silicon

Main moving plate
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Need

® Robust, low cost actuators
e Simple fabrication process
® Ability to integrate with polymers

® Large displacement needed
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Other Applications

® Switches
® RF MEMS
e Optical MEMS, Aligners
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Conventional Thermal Actuators
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Design of Thermal Actuators

L =600 m
I =400um
1, =200um

w, =w, =15um

Fle xu re Deflection w, = 25 um
Cold Arm

~
~

(AT, +L Jhw(w+ g)(21,1, +12 ); 2 h{(w+ gjs ) (gﬂ
2021, +1)1 3
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Transient Response

Mechanical Response

v(x,t) = Z (@.S(Ax)+bT(Ax)+cU(Ax)+dV(Ax))sin(wt+.),

S(x)=(coshx+cosx)/2  T(x)=(sinhx+sinx)/2 U(x)=(coshx—cosx)/2
Vi(x)= (sinh X —sin x)/ 2

f=w/2r=37.89 kHz T . =T1.5Us

Thermal Response
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Displacement

Tactor

ANSYS

1/28/2004

Tactile MEMS: FEA analysis

Composite Actuator

DEC 3 2001
15:10: 16
NOoDATL SOLUTICON
STEP=1

SUE =1

TIME=1

pH (AVE)
REYE=0
PowsrGraphlics
EFACET=1
AVRESZ=Mat

DM =8Z.75
SMN =-.052383
BMX =8Z.749

Ay =i
DIZT=960. 947
F =a6. 689
F =730.861
Z-BUFFEER
-.052333
9.145
158.348
27.548
36,748
45.53489
55,149
64,349
73.549
d2. 748

Hopg

ONNRERNRC

13



Tactile MEMS: FEA analysis

Composite Actuator

Transient Thermal Analysis
1 ANSYS DEC 3 Z001
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Fabrication on PCB substrates

Fixed Structure

1/28/2004

«+— Copper layer

“*— PCB substrate

«+— SU8/Ommnicoat Layer

Electrodeposit Nickel in
SU8 Mold

Remove SUS

able Structures

Etch Copper
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Thermal Actuators as a
Mechanical Switch

>

Close view of the ’ 7 Array of Switches (Top
sw1tch1ng mechanism ' : and Bottom Views)
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Development History

Initial concept, November 2001 used composite
(inlayed) actuators ’ ' -

SUS8 1s used
for electro-
- = forming

Third generation devices (Spring 2003) utilize

AZ4903 photoresist instead of SUS.

Sharp corners _ s
removed to reduce
1/28/2004 stress concentration
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Processing Sequence:
SU8/Ni composite

SUB8/Ni

.,

. N .
—

4. Pattern the SU8 with UV

5. Spin thick Photoresist
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Processing Sequence:
SU8/Ni composite (cont.)

.

SUB8/Ni

6. Pattern the photoresist

|

7. Plate Nickel

9. Spin photoresist

N W |
ﬁ

10. Pattern the photoresist
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Processing Sequence
SU8/Ni composite (Cont.)

SUS8/Ni
_j 11. Plate second layer of Ni
ﬂ 12. Spin PR and etch the
backside oxide with BOE

13. Strip the PR and
etch the seed layers

14. Spin resist on both
sides of the wafer
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Processing Sequence:
SU8/Ni composite (cont.)

SUB8/Ni

_— 15. Pattern the backside

photoresist

16. Etch the Silicon
with DRIE

ﬁ 17. Remove the PR

_:ﬂ

18. Etch the exposed oxide
and the seed layers
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Single Thermal Actuator Pair
(First Generation Device)

SUB8/Ni composite actuator. SU8 has higher TCE allowing lowering of the
operating temperature and power.
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4 x 5 Tactile Array
(First Generation)

Actuation Experiments
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Fabricated Tactile Arrays Single Pixel (movie)
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Fabrication with SUS8

1. Wafer Oxidation

2. Deposit E-beam
Ti

3. Deposit E-beam Cu

4. Spin
OmniCoat

5. Spin SU8
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Fabrication with SU8 (cont.)

% 7. Etch Omnicoat

S R — w—— VT
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Fabrication with SU8 (cont.)

— L 0 ratemmnerr

— L | i Ekcropaen

13. Remove SU8/

o e
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Fabrication with SU8 (cont.)

14. Etch the
copper

15. Remove theTi
layer with HF dip

"MEMS @ UofA/AME
— 20um
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Advantages of SUS8 process

The SU8 can achieve very high aspect ratios
and up to 100 microns thickness

SU8-Copper adhesion problem was solved by
using OmniCoat (used also as a release layer)
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Problems with SU8

The main difficulty with SU8 plating is the mold removal.
Since SUS8 is epoxy, it is highly cross-linked and therefore
difficult to etch.

The SU8 is chemically attacked by PG remover and is
cleaned completely from the large areas after
approximately 1 hour

The remaining SU8 is mechanically lodged between the
fine lines but is detached from the seed layer

Ultrasound and water jet is required

The nickel etchant has to be carefully chosen

The yield is an issue ’lﬁ =k
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Possible Solution with SUS8

Nickel etchant advantages:
Removes the residual SU8 on the sidewalls of

the plated features
Helps remove the SU8 prisms for the release

noles
_oosens the large pieces of SU8

Problems
Nickel etchants may attack the copper seed
layer which is a problem for the second plating
Some etchants modify the uncured SU8 and

make it difficult to remove (stiff)
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Issues with Second Ni Layer

Problems with plating on SU8
Difficult SU8 release after plating with thick
resist mold. The SU8 becomes stiff and cannot
be peeled off with PG
Thin resist is less harsh on the SU8 but does
not hold well in the electroplating bath during
reverse plating (etching). The etching is needed
for good adhesion between the two nickel
layers

Solution to this problem:
Remove the SUS8 prior to plating
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AZ4903 Process

Photoresist limitations
Thinner films
Lower aspect ratio
More sensitive to processing tolerances
(exposure,development)
Shape distortions due to the softness of the resist
Difficult to re-flow and therefore problematic
spinning over severe topography (our case)
Advantages
Well established technology
Removal is extremely easy — acetone

Multiple coats possible to increase the thickness
High yield
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AZ4903 Process Sequence

AZ4903

1. Wafer Oxidation

2. Deposit E-beam
Ti/Cu

3. Spin PR-AZ4903

4. Pattern the PR

5. Plate Ni
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AZ4903 Process Sequence
(cont.)

AZ4903

B

6. Strip the PR

7. Spin one layer of PR

8. Spin second layer
of PR — AZ4903

9. Pattern the resist
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AZ4903 Process Sequence
(cont.)

Fabrication

10. Plate second
level of Nickel

11. Remove the PR

12. Spin PR

13. Etch the backside
oxide with BOE
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AZ4903 Process Sequence
(cont.)

Fabrication

14. Remove the PR

15. Remove seed
layer with copper
etch and BOE

16. Spin PR on both
sides of the wafer

17. Pattern the
backside PR
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AZ4903 Process Sequence
(cont.)

Fabrication

18. Silicon DRIE

19. Oxide etch

H

20. Remove PR

21. Remove seed
layers and

undercut
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Third Generation Device
(AZ4903 process)

—

e

Before Si etching —

After Si etching s
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Actuation Experiments
(second generation
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Actuation Data
(SU8 based device)

Parameter Value

Displacement 23-69um
Operating Current 150-250mA

Operating voltage  Less than 0.2V(per actuator
Resistance 0.82 (per actuator)
Response Time 17ms

Power consumption 50mW
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Transient Analysis Validation
(SU8-base device)

1
T -T,=ATe /*,

Isothermal resistor vo.ltage drop
§ —— Thermal actuator voltage drop AT =T - TO .
5 : : 5 5 : max

AV =IR,, =I(R +R, (1+aAT))

AV =I(R +R)+ IaRaATe_%‘h :

Voltage drop [V]

Thermal transient time measurement with
1/28/2004 a two-level current source A



Assembly of Complete Stack:
Piezoelectric + Thermal

1/28/2004 Vibrating Plate Assembly 42
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Driver Circuit with
Microprocessor
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Current State

The AZ4903-based device uses well-established
process and 1s easy to reproduce

The DRIE etching of the individual pixels
produced larger then optimal gaps, requiring
larger stroke from the thermal actuators.

To resolve this process 1ssue, a fourth generation
device with variable gaps in the DRIE etching
mask 1s being fabricated

Variable
Etch Mask
From Pixel to
Pixel
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Summary and Conclusions

* Three generations of the development of tactile
communication array have been completed.

* The AZ4903 photoresist-based device is the most
reproducible.

* DRIE etch is the single most expensive fabrication step
($400/wafer), which also introduces process variations due
to the diverging etch profile.

* Preliminary experiments with the piezo benders confirmed
that 20-30 um displacements are perceivable. The required
driving voltage of the piezo benders was 90V.

* The total power consumption was 80mW, which allows
battery operation.

* A fourth generation device is being processed to
determine the optimal etch gap for the DRIE step.
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