

Monitoring and control of binary gas mixtures from solid phase MOCVD sources using an acoustic sensor

L. Henn-Lecordier, G. Rubloff, J. Kidder Institute for Systems Research and Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD, 20742

http://www.isr.umd.edu/~rubloff

- Increasing variety of new precursors for advanced materials
 - Si VLSI (e.g., low and high K dielectrics), wide bandgap SC (GaN)
- Productivity and ESH metrics often affected
 - Low chemical stability, low vapor pressure liquid or solid sources, high toxicity …
- ESH benefits from improved precursor delivery:
 - Greater flexibility in chemical process design
 - Wider variety of precursors meet manufacturability constraints
 - Use of Advanced Process control
 - APC is key to higher yield and equipment effectiveness
 - Higher productivity minimizes ESH metrics such as materials
 utilization

- Solid MOCVD sources used in compound semiconductors
 - e.g. TMI in III/V GaN devices, Cp_2Mg for p doping
- Dosimetry issues from use of MO solid sources
 - Low vapor pressure: TMI (1.75 Torr), Cp₂Mg (0.05 Torr) at 25°C
 - Require heated source and feed lines
 - Instability of metal-organic feed rate due to:
 - Aging effects (change of crystal surface area, material redistribution, contamination)
 - Interaction feed line / MO vapor \Rightarrow condensation
 - Incomplete saturation at high flows
- Reproducibility issues affect device performance
- > Only small fraction of the source is used before being replaced

⇒ Need for real-time monitoring and control of the MO precursor concentration

Inficon "Composer" acoustic transducer

Gas	Mol. weight (g/mol)	Res. Freq. (Hz)
H ₂	2	4000
Cp ₂ Mg	154.5	440

Measurement of resonant frequency F

$$F = \frac{C}{2L}$$
 with $C = \sqrt{\frac{\gamma_{avg} RT}{M_{avg}}}$

C: speed of sound, L: chamber length T: gas temperature γ_{avg} : average specific heat ratio M_{avg} : average molecular weight

- If binary gas mixture (precursor, carrier)
- If F_2 , carrier gas resonant frequency, is known \Rightarrow F/F₂ = f (Precursor Mole Fraction)
- High mass ratio \Rightarrow high sensitivity

Carrier gas (H_2) flown into temperature controlled sublimator to be saturated by source vapor pressure

Recommended temperatures

Gas	Bath T (° C)	VP (Torr)
ТМІ	25	2.54
Cp ₂ Mg	40	0.16

Monitoring of TMI and Cp₂Mg concentration by acoustic sensing

- P > 150 Torr, composition measurements vary accordingly with VP / P
- At P < 50 Torr, measurement failure due to insufficient transfer of acoustic energy
- Between 50 and 150 Torr
 - Higher concentration achievable but sensor response non-linearity vs. 1/P

Varying pressure is not recommended to adjust composition due to effects of pressure change on acoustic measurements

• Requirements in reactor

- Tune and maintain:
 - Constant MO precursor concentration
 - constant gas throughput (H2 carrier + precursor) to reactor

• Requirements in delivery system

- Fixed pressure to minimize sensor drift (and potential low pressure failure)
- Controllable precursor concentration to compensate for change in source vapor pressure (temperature or aging effects)

Effect of H₂ flow rates

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 9

With Cp_2Mg , measurement Standard Deviation = 3 E-5 mol%

> accuracy better than 1 ppm with 75 / 1 mass ratio

> can detect Cp_2Mg concentration change resulting from 0.1 % variation in dilution flow (under 100 sccm total flow)

 \Rightarrow Excellent prognosis for real-time control of MO feed rate

Effect of temperature drift in open loop configuration

H₂ dilution and carrier flows corrected to keep composition on target

- Proportional Integral Derivative close loop control
- Primary control variables adjusted every second

Effect of temperature drift on composition in closed loop control

- Source temperature varied from 40 to 32°C
- Σ (H₂ flows) = 150 sccm, P = 300 Torr
- Cp_2Mg composition target = 0.01 mol% (0.3 umol/min)

 Cp_2Mg composition controlled within a 1 % range despite variation of the source vapor pressure from 0.16 to 0.08 Torr.

Closed loop control in presence of short term disturbances

Set On/Off heating elements to generate 3°C temperature oscillations in feed line

Cp₂Mg concentration control in presence of disturbances

T(source) = 40°C; T(Feed line) = 50 +/-1.5°C in (a); 60 +/-1.5°C in (b)

- Feedback control results in significant reduction of composition variations in presence of disturbances
- Higher feed line temperature minimizes MO condensation

Use of closed loop control allows reproducible composition profiling with 1 min. response time

- Acoustic sensing provides very accurate measurements of metal organic concentration obtained from low VP solid source
- Use of closed loop control with acoustic sensing enables stable delivery of low vapor pressure MOCVD solid sources
 - Control of the composition within 1% even at low precursor concentration (e.g., 0.01 mol % with Cp₂Mg)
 - Compensate long term drifts due to source aging as well as short term drift due to source variability
- Use of APC on reactant delivery system could significantly increase the tool productivity and reduce the precursor utilization.

Acknowledgement: Carl Gogol & Abdul Wajid (Inficon)