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Improved precursor delivery:
ESH perspectives

• Increasing variety of new precursors for advanced materials
– Si VLSI (e.g., low and high K dielectrics), wide bandgap SC (GaN)

• Productivity and ESH metrics often affected
– Low chemical stability, low vapor pressure liquid or solid sources, high 

toxicity …
• ESH benefits from improved precursor delivery:

– Greater flexibility in chemical process design
• Wider variety of precursors meet manufacturability constraints

– Use of Advanced Process control
• APC is key to higher yield and equipment effectiveness
• Higher productivity minimizes ESH metrics such as materials 

utilization
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Issues with delivery of
solid MOCVD precursors

• Solid MOCVD sources used in compound semiconductors
– e.g. TMI in III/V GaN devices, Cp2Mg for p doping

• Dosimetry issues from use of MO solid sources
– Low vapor pressure: TMI (1.75 Torr), Cp2Mg (0.05 Torr) at 25oC

• Require heated source and feed lines
– Instability of metal-organic feed rate due to:

• Aging effects (change of crystal surface area, material redistribution, 
contamination)

• Interaction feed line / MO vapor ⇒ condensation
• Incomplete saturation at high flows

Reproducibility issues affect device performance
Only small fraction of the source is used before being replaced

⇒ Need for real-time monitoring and control of the MO 
precursor concentration
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Measurement of resonant frequency F

• If  binary gas mixture (precursor, carrier)
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Solid source gas delivery

Carrier gas (H2) flown into temperature controlled sublimator to be 
saturated by source vapor pressure
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Monitoring of TMI and Cp2Mg concentration by 
acoustic sensing
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Effect of pressure variations
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Slope = 2.2 E-2,
VP = 2.44 Torr

• P > 150 Torr, composition measurements vary accordingly with VP / P
• At P < 50 Torr, measurement failure due to insufficient transfer of acoustic energy 
• Between 50 and 150 Torr

- Higher concentration achievable but sensor response non-linearity vs. 1/P

H2 carrier = 100 sccm
P varied from 500 to 50 Torr

Varying pressure is not recommended to adjust composition due 
to effects of pressure change on acoustic measurements
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Ideal operating environment

• Requirements in reactor 
– Tune and maintain:

constant MO precursor concentration
constant gas throughput (H2 carrier + precursor)  to reactor

• Requirements in delivery system
– Fixed pressure to minimize sensor drift (and potential low pressure 

failure)
– Controllable precursor concentration to compensate for change in

source vapor pressure (temperature or aging effects)
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Effect of H2 flow rates
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MO composition can not be
reproducibly adjusted by varying    
carrier gas flow

• Σ (carrier + dilution) = constant 
throughput
• Composition adjusted by varying 
H2 dilution flow rate

H2 carrier flow /
H2 dilution flow 
(sccm)

P = 300 Torr

3 E-5 mol% Standard Deviation
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With Cp2Mg, measurement Standard Deviation = 3 E-5 mol%

accuracy better than 1 ppm with 75 / 1 mass ratio

can detect Cp2Mg concentration change resulting from 0.1 % 
variation in dilution flow (under 100 sccm total flow)

⇒ Excellent prognosis for real-time control of MO feed rate

Control of Cp2Mg concentration
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Effect of temperature drift 
in open loop configuration
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• Cp2Mg bath temperature 
varied from 40o to 32oC

-Vapor pressure down from 
0.16 to 0.08 Torr
- “Simulates” aging effects
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• Open loop configuration:
• dilution flow = 100 sccm
• sublimator flow = 50 sccm

• Cp2Mg composition down 
from 0.01 to 0.005 mol%
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Closed loop concentration control
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H2 dilution and carrier flows corrected to keep composition 
on target 

- Proportional Integral Derivative close loop control
- Primary control variables adjusted every second
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Effect of temperature drift on 
composition in closed loop control

0 40 80 120 160 200
0.000

0.004

0.008

0.012

0.016

0.020

C
p 2M

g 
co

m
po

si
tio

n 
(m

ol
 %

)

Time (min)

40

60

80

100
Dilution 

Source

 H
2 f

lo
w

 ra
te

s 
(s

cc
m

)

• Source temperature varied from 40 to 32oC 
• Σ (H2 flows) = 150 sccm, P = 300 Torr
• Cp2Mg composition target = 0.01 mol% (0.3 umol/min)
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Cp2Mg composition controlled within a 1 % range despite 
variation of the source vapor pressure from 0.16 to 0.08 Torr.
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Closed loop control in presence of 
short term disturbances
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Cp2Mg concentration control
in presence of disturbances

T(source) = 40oC; T(Feed line) = 50 +/-1.5oC in (a); 

• Feedback control results in significant reduction of composition
variations in presence of disturbances

60 +/-1.5oC in (b)

• Higher feed line temperature minimizes MO condensation
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Composition profiling
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60 sec. response time

Use of closed loop control allows reproducible composition
profiling with 1 min. response time
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Conclusions

• Acoustic sensing provides very accurate measurements of metal 
organic concentration obtained from low VP solid source

• Use of closed loop control with acoustic sensing enables stable delivery 
of low vapor pressure MOCVD solid sources
– Control of the composition within 1% even at low precursor concentration 

(e.g., 0.01 mol % with Cp2Mg)
– Compensate long term drifts due to source aging as well as short term drift 

due to source variability
• Use of APC on reactant delivery system could significantly increase the 

tool productivity and reduce the precursor utilization.

Acknowledgement: Carl Gogol & Abdul Wajid (Inficon)


