Survival and Adaptation of Bacteria in Ultrapure Water Systems

Kimberly Ogden Morven McAlister Dawn Baker Diana Betencourt Liese Beenken

Department of Chemical and Environmental Engineering, The University of Arizona

The Challenge

- To produce water of quality:
 - TOC < 1 ppb
 - Particles (>0.05µm) < 500 / L
 - Oxygen < 10 ppb
 - Bacteria \leq 1 CFU / L
 - Resistivity = $18.2 \text{ M}-\Omega \text{ cm}$

Bacterial Contamination of UPW – The Main Issues

- Compromises the quality of the final product
 - Semiconductor industry
 - Pharmaceutical industry
- Decreased efficiency in heat exchangers (<10%)
- Decreases life-time of ultrafilters, RO membranes etc.
- Overall increase in expenditure

Survival Strategies of Oligotrophs

- Cells are very small (<0.2 μM)
- Production of EPS
- Broad substrate range
- Growth on <1 mg carbon / L
- Increased adhesion to surfaces
- Reduced rate of metabolism

Plate Counts (Quantitative)

- ASTM Standards
 - R2A media
 - Incubation at 28°C for 48-72 hours
- Data from Our research suggests:
 - Use of diluted R2A media advantageous
 - Oligotrophs require up to 4 weeks incubation
 - Underestimates viable population by \geq 20 fold

Direct Staining - Quantitative

- Viable cells
 - Cyanotolyl tetrazolium chloride (CTC)
 - Artificial electron acceptor → reduced within electron transport chain
 - Intracellular formation of red colored formazans
- Total cells
 - 4',6'-diamidino-2-phenylindole (DAPI)
 - Binds to bacterial DNA
 - Stained cells fluoresce blue

Schematic of Typical UPW System

Effect of Incubation Time on Bacterial Enumeration

Enumeration of Bacteria in UPW - Comparison of Plating and Direct Staining

Enumeration of Bacterial Contamination – Industrial System 1

POU in Fabrication Facility Bacteria

- Etch Tanks
 - Mixing Chemicals
 - Background flow rate of water
- Sprayers
- Piping to tanks

Flow Cell and Apparatus Design

Survival in Ge- Crystals

Survival on Al- Wafer Surfaces

Main Bacteria Found in UPW System

ISOLATED FROM MAKE-UP LOOP:

Mycobacterium Flavobacterium Alcaligenes Acinetobacter Burkholderia Rhodobacter Flavobacterium Microbacterium Arrthrobacter Bacillus Caulobacter **Pseudomonas** Aquaspirillum Rhodococcus

Kocuria Bradyrhizibium

Luteibacter Deinococcus Stenotrophomonas Ideonella/Leptothix Rhodopseudomonas Sphingomonas Xylena Ribrivivax Agromyces Aeromicrobium Xantomonas Ralstonia

ISOLATED FROM POLISHING LOOP:

Pseudomonas Burkholderia Sphingomonas Blastobacter Bradyrhizibium Flavobacterium

Microbacterium

Characterization of Key Strains

	Ralstonia sp.	<i>Bradyrhizobium</i> sp.
Physiology	Gram –ve rods	Gram –ve rods
Area of Isolation	After UV254	After 0.1 μ m filter
Growth under microaerophilic conditions	+	+
Growth substrates	33 out of 44 C- sources tested (mainly amino acids and carbohydrates)	29 out of 44 C- sources tested (mainly carbohydrates)

Survival of Bradyrhizobium sp. in UPW

Time (days)

Total Protein Concentration (µg/ml)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Survival of Bacteria in UPW

- Decrease in cell size
- Stabilization of bacterial cell numbers
- Indefinite periods of survival following stabilization of numbers
- Fluctuations in cells numbers
 - Influence of cryptic growth?

Influence of Dead Bacterial Cells on UPW Quality - Polishing Loop

Time (hours)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

2-D Gel Protein Analysis

Question to be answered

> Determine if different proteins are expressed when grown in UPW and rich media

Procedure

- ≻Grow bacteria in rich media for 1 week
- > Freeze half the cells for analysis (rich media sample)
- Place other half in UPW for 2 months (UPW sample)
- > Send both samples in for analysis

Protein Analysis – Cells in UPW vs media

Ultra Pure Water sample labeled with Cy3 in green **Rich Media** sample labeled with Cy5 in red Yellow/ Orange from overlapping cy-dye fluorescence, indicating proteins present in both samples

UPW

Rich Media

UV254 – The Issues

- UV254 used for bacterial control
 - Damages bacterial DNA
- UA Research indicates:
 - Area immediately proceeding UV254 very prone to biofouling \rightarrow Cryptic growth prevalent?
 - Rate of cell death by UV irradiation is affected by the presence and nature of organics in water
 - Impenetrable to EPS/biofilm
 - Some strains are more adhesive after exposed to UV254

Experimental Results

First-exposed Bacteria

LN[conc] vs Time for 3A1 Bacteria First Exposed to UV ₂₅₄ for the First 90 Seconds

Ln[conc] vs Time for 3A1 Bacteria First Exposed to UV₂₅₄ after 90 seconds

Concentration Dependence for first 90s: 10⁹ cfu (green), 10⁸ cfu(plum), 10⁷ cfu(blue)

Previously Exposed Bacteria

Ln[conc] vs Time for 3A1 Bacteria previously exposed to UV ₂₅₄ for the first 90 seconds

Relationship Between Previously and First Exposed Bacteria

First Exposure (Plum and yellow) Second Exposure(Blue and Pink)

Results

Death Rate for First and Previously exposed 3A1 bacteria

	Time period(s)	Original Concentration	Death Rate	Standard Deviation
		10 ⁹	0.098	0.03
Exposed for	0-90	10 ⁸	0.088	0.0002
the first time		10 ⁷	0.045	0.007
	90-300		0.020	0.004
Previously Exposed	0-90	10 ⁹	0.10	0.01
	90-300		0.016	0.001

Future Approaches

- ➢ Mass spectrophotometry analysis on different spots in 2-D gels to determine type of protein
- Determine rate and mechanism of capsule formation
- Investigate the importance of the concentration as a parameter for death by UV light
- Continue to investigate cell adaptation to UV light