CO₂ Microemulsions for Rapid Removal of Etch Residues of Porous Low k Materials

- Keith Johnston and Peter Green, Univ. of Texas
- Students: John Keagy, Xiaogang Zhang, Joseph Pham
- IMST: Eric Busch, Josh Wolf, Todd Rhoad
- Contact info: Keith Johnston: 512-471-4617 kpj@che.utexas.edu

Interfaces, Films and Nanoscale Materials in Supercritical Fluids: Fundamentals and Applications

CO₂ motivation: environmentally benign, high performance

- non-toxic, nonflammable, relatively inert, no solvent residues, benign solvent emissions, inexpensive
- micro-and macro-emulsions of water and CO₂ to solubilize both hydrophilic and CO₂-philic materials
- tunable solvent strength, low viscosity and interfacial tension
 - phase equilibria, reactions, crystallization, colloid stability
 - penetration into nanoporous materials
 - avoid capillary collapse during drying
 - avoid defects (rings) due to dewetting

Cu Chem. Fluid Deposition for interconnects Watkins et al Science, 294, 141, 2001)

CO₂: Environmentally Benign, Non-toxic, Non-flammable; low interfacial tension and viscosity aid penetration

Temperature

Advantages of CO2 Processing

- Environ. benign, nontoxic, nonflammable
- Favorable transport rates
 - Low viscosity
 - High diffusion coefficients
- Low interfacial tension
 - Wetting of small pores- removal of impurities
 - Prevention of capillary collapse
- Avoid swelling and voiding of filmsellipsometry versus organic solvents

Key Advances in Supercritical Fluid Based Colloidal Dispersions

Colloid and Supercritical Fluid	Stabilizing group
Water-in-alkane microemulsion (1988)	Alkane ¹²²
Water-in-CO ₂ microemulsion (1994)	a. alkane/fluoroalkane hybrid ^{21,22} b. perfluoropolypropylene oxide (<1000 molar mass) ^{23,24}
Polymer latex in CO ₂ (1994)	Polymeric flouroacrylates and siloxanes (high molar mass) ⁵³
Metal and semiconductor nanocrystals in water/ CO_2 microemulsion(1999)	a. perfluoropolypropylene oxide and alkane ²⁵ b. perfluoropolypropylene oxide ²⁶
Metal nanoparticle dispersion in water (2000)	a. Without stabilizer ¹⁰⁶ b. Alkane thiols ¹⁴
Metal nanocrystal dispersion in CO ₂ (2000)	Fluoroalkane thiol ²⁷
Gold nanocrystals for synthesis of Si nanowires in alkanes and octanol at high temperature (2000)	Alkane thiol ¹⁹
Si nanocrystal dispersion in alkanes and octanol (high T) (2001)	Octanol ¹³

Synthesis of Group IV Semiconductor Nanocrystals in Supercritical Fluid

- Si Nanocrystals (1.5-4 nm)
- Holmes et al., *J. Am. Chem. Soc.*, **2001**,3743
- Ding et al., *Science*, **2002**, 1296.
- Si Nanowires (4-5 nm dia.)
- Holmes *et al.*, *Science*, **2000**, 1471
- Lu et al., Nano Lett., **2003**, 93
- Ge Nanowires (10-150 nm)
- Hanrath *et al.*, *J. Am. Chem. Soc.*, **2002**,*124*, 1424

Why Liquid and Supercritical CO₂?

<u>Used extensively in many polymer</u> <u>processes:</u>

- Foaming
- Impregnation
- Separations
- Synthesis
- Microelectronic processing

<u>Advantages</u>

- Non-flammable, non-toxic, abundant
- Mild critical conditions ($T_c = 31 \, \%$, $P_c = 73.8 \, bar$)
- Tunable properties
- Low surface tension

Drying Photoresist

 N_2 dried

SCCO₂ dried^{200 nm} Namatsu, J. Vac. Sci. Tech. B, 2000.

Low dielectric constants cleaning

No treatment

 $SCCO_2+H_2O+Surf.$

Zhang et al., J. Vac. Sci. Tech. B, 2004.

CO₂ plasticization plays a critical role in these processes

Avoid dissolution and collapse of low k material

*Use surfactants to avoid dissolution by organic solvents or organic cosolvents in CO₂

*Avoid side-wall degradation

*Remove organic, organometallic, inorganic

*Maintain low k values

*Avoid attack of copper

Applications of W-C Micro- and Macroemulsions

• Separations/cleaning

- extraction of hydrophilic substances (proteins, amino acids, heavy metals)
- Cu, Europium Yates et al. (2001)
- enhanced oil recovery (viscosity)
- dry cleaning (commercialized process)
- Microelectronic devices : high diffusion rates, low surface tension
 - lithography, cleaning low k dielectrics •
- Reactions- phase transfer
 - $C_6H_5Cl + KBr \rightarrow C_6H_5Br + KCl$ Jacobson et al.; J.Org.Chem (1999)
- Liposomes-drug delivery
 - Otake et al., *Langmuir* (2001)

- Nanoparticle Templates
 - Ag, $R_p = 3 8 \text{ nm}$ Ji et al.; *JACS* (1999)
 - CdS, $R_p = 1 2 \text{ nm}$ Holmes et al., *Langmuir* (1999)
 - Cu

Cason and Roberts, JPC B (2000)

- Latexes (dispersion-emulsion polymerization, coatings)
 - Fascile drying versus water
 - Impregnation, Liu and Yates, 2003
- Bio-solubilization / conversions
 - BSA-AC solubilized in μ -emulsions
 - Johnston et al.; Science (1996)
 - lipase-catalyzed hydrolysis
 Holmes et al.;*Langmuir* (1998)

Surfactants in CO2- From Art to Science

Day and Night M.C. Escher

Formulation Variable: Amount of Light

Roadmap for emulsion and microemulsion formation and stability: Surfactant adsorption and partitioning

A STORE OF THE STO

W/CO_2 Emulsion Classifications

mini-

maçro-

* - at 35°C, 300 bar

····			
Appearance	transparent	opaque	opaque
Radius (nm)	<10	50-500	>500
Area/vol (cm ⁻¹)	107	106	10 ⁵
(surfactant amount)			
γ (mN/m)	< 2	< 2	< 10
Settling Rate* (cm/hr)	Thermo. stable	0.5 × 10 ⁻³	0.5
H ₂ 0/surf (mol/mol)	5-60	>1000	> 1000

Tergitol TMN Series with Methylated and Branched Tail

5b-C₁₂E_x

Weaken A_{TT}

$$1/HCB = \frac{A_{TC} - A_{TT} - A_{CC}}{A_{HW} - A_{HH} - A_{WW}}$$

Hydrocarbon Surfactants for W/C microemulsion

E

SAXS of interactions of 5 nm gold nanocrystals coated with PFPE ligands in CO2

- S(q) used to calculate g(r) and c(r)
- Interactions relatively strong at highest ρ and grow with a decrease in ρ – similar to PFPE w/c microemulsions (Lee et al)

- *Retrograde vitrification phenonmenon observed in both PMMA and PS thin films*
- At constant pressure, a rubbery-to-glassy transition at high temperatures and a glassy-to-rubbery transition at low temperature
- Retrograde vitrification envelope of thin films shift to the left lower pressures

Template for future chips. Block copolymer micelles provide a rigid preordered template that is swollen by supercritical carbon dioxide to allow the metal organic precursor to diffuse in.

'ynthesis of Mesoporous Metal Oxides by 3-D Replication of Block Copolymer Templates in CO Watkins et al., U. Mass.

1. Prepare BCP Template 2. Modify by Phase Selective Chemistry

- Localize Catalyst in Hydrophilic Domain of Copolymer Template
- Condense Alkoxide to Yield Metal Oxide
 e.g. TEOS + H₂O → SiO₂
- Heterogeneous Approach Preserves Template Morphology!

Spherical Pore Morphology \rightarrow

32°C 3715 PSI

Objectives

- Cleaning (residue removal) (JSR 5109 pMSQ)
 - Novel cleaning technique using TMN-6, H₂O and scCO₂ microemulsion optimized at 40 °C and 2000 psi, 15-40 ml/min (30 s residence time)
 - Cleaning time reduced to 2 minutes
- HMDS repair in scCO₂ of etched and ashed wafers (lit.- Muscat, Reidy)
 - 1% HMDS by weight for 1 minute
 - Ellipsometry, contact angle and FTIR show repair
- Ellipsometry: films return to values near initial conditions after two sorptions- no damage

Supercritical CO2 apparatus for cleaning wafer pieces

syringe pump

Chemical-Mechanical Cleaning method

- Clean with surfactant, water and CO₂
- Invert during CO₂ rinse
- Possible further decrease using ultrasonic actuator

Dual-damascene structure

Optimization of cleaning time

Cleaning method	Clean time (min)	Rinse time (min)	Total time (min)
Chemical	30	30	60
Chem/mech	1.4	1.1	2.5

Chemical dissolution clean only– residue remains

Chemical/mechanical clean– all the residue is removed

Ultrasonic cleaning using microemulsion

40°C and 3000 psia

- TMN-6 (8EO)
 - without sonication residues remain
 - with sonication little residue remains

- TMN-3 (4EO)
 - without sonication residues remain
 - with sonication some residue remains

TMN-6 surfactant cleaning

Chemistry	Clean model	Clean time (min)	Rinse time (min)	Cleaning result
Pure CO2		30	30	residues remain
TMN-6 (1%)	chemical	30	30	residues remain
TMN-6 + IPA	chemical	30	30	residues remain
TMN-6 With ultrasonic	chemical	30	30	mostly clean
TMN-6 (1%)	chem/mech	5	5	clean
TMN-6 (0.5%)	chem/mech	5	5	clean
TMN-6 (0.4%)	chem/mech	5	5	some residues remain

Particle disengagement from surface (water in trench)

- Detergency mechanism: $\gamma_{SP} > \gamma_{PW} + \gamma_{SW}$
- The surfactant lowers both values on rhs favoring particle disengagement
- Particles sterically stabilized in water phase
- Water droplets may be emulsified in CO₂

HMDS repair of blanket partially etched/ashed JSR

HMDS (wt%)	Temp (°C)	Pressure (psig)	Time (min)	CH ₃ Area	Thickness (Å)
Untreated	n/a	n/a	n/a	18.18	2371.3±31
1	50	2200	10	22.38	2424.8±5
1	50	1500	10	26.45	2513.4±44
1	50	1500	1	23.12	2560.8±25

HMDS capping experiments to determine optimal conditions

FTIR spectra shows effect of HMDS repair

Contact angle before and after HMDS repair

- 1% HMDS in scCO₂ at 209 atm and 54°C for 2 min soak
- 7% n-Propanol in scCO₂ at 174 atm and 53°C for 2 min soak
- \uparrow CH₃, Si-O-Si \downarrow iso/gem SiO-H \downarrow H-bonded SiO-H

- *Measure change in polazition state upon reflection (* ψ *and* Δ *)*
- Ellipsometric angles are collected (ψ and Δ)
- Ellipsometric angles are modeled to obtain film thickness and optical constants
- Has been used to measure Tg, swelling of films in presence of solvents, surface roughness, monolayer formation

• At higher pressures, CO₂ sorption expands films

- Increase in the index of refraction indicates that CO₂ replaces air in the voids
- Same effect over 2 sorptions
- CO₂ does not damage the films

Summary

- Chemical/mechanical method
 - Clean using TMN-6, H_2O and $scCO_2$ for 2 minutes
- HMDS repair in scCO₂
 - Ellipsometry, contact angle and FTIR show repair
- Ellipsometry shows scCO₂ does not harm JSR during processing