Nano Interconnect Technology -Looking at the End of the Roadmap Werner Pamler Infineon Technologies, Corporate Research CPR NP Munich, Germany

Never stop thinking.

Outline

Introduction

- Infineon's Corporate Research (CPR)
- ITRS Roadmap

Nano Interconnect Activities at IFX CPR

- Resistivity
- Cu Diffusion Barriers
- Air Gaps
 - State of the Art
 - Ozone/TEOS CVD
 - Measurements
 - Simulation

Werner Pamler CPR NP

> June 2003 Page 2

Corporate Research (CPR)

A Mix of Blue Sky, High Risk, and Roadmap Extension Projects

Nano Devices	Nano Processes	Photonics	High Frequency Circuits	Few Electron Devices	Systems Technology	Emerging Technologies
Double Gate Transistors	Nano- interconnects	Advanced Laser Diodes	CMOS Circuits	Fully Electronic Biochip	60 GHz Broadband Access Systems	Wearable Electronics
Quantum Devices	Carbon Nanotubes	> 40 Gb/s Components	SiGe Bipolar Circuits	35nm Device Circuits	Innovative Cell Phone Architectures	Polymer Electronics

Werner Pamler CPR NP

> June 2003 Page 3

Interconnect Problems

Werner Pamler CPR NP

> June 2003 Page 4

Interconnects

SEM image of AMD's microprocessor ("Hammer") in 130 nm CMOS technology with 9 copper layers

Werner Pamler CPR NP

> June 2003 Page 5

E. Zschech et al., AMD Dresden, E-MRS Spring Meeting, Strasbourg 2002

ITRS Roadmap 2003

Interconnect Technology Requirements (MPU, long-term)

	2010	2012	2013	2015	2016	2018
DRAM 1/2 pitch [nm]	45	35	32	25	22	18
Metal 1 wiring pitch [nm]	108	84	76	60	54	42
Metal 1 asp. ratio (for Cu)	1.8	1.8	1.9	1.9	2	2
Conductor effective resistivity $[\mu\Omega \text{ cm}]$	2.2	2.2	2.2	2.2	2.2	2.2
Barrier / cladding thickness [nm]	5	4	3.5	3	2.5	2
Interlevel metal insulator, effective k	2.3-2.6	2.3-2.6	2.0-2.4	2.0-2.4	<2.0	<2.0
Interlevel metal insulator, bulk <i>k</i>	<2.1	<2.1	<1.9	<1.9	<1.7	<1.7

Werner Pamler CPR NP

) ≽

June 2003 Page 6 manufacturable solutions known

no known solutions

http://public.itrs.net

ITRS Roadmap 2003

Interconnect Technology Requirements (MPU, long-term)

	2010	2012	2013	2015	2016	2018
DRAM 1/2 pitch [nm]	45	35	32	25	22	18
Metal 1 wiring pitch [nm]	108	84	76	60	54	42
Metal 1 asp. ratio (for Cu)	1.8	1.8	1.9	1.9	2	2
Conductor effective resistivity [µWcm]	2.2	2.2	2.2	2.2	2.2	2.2
Barrier / cladding thickness [nm]	5	4	3.5	3	2.5	2
Interlevel metal insulator, effective k	2.3-2.6	2.3-2.6	2.0-2.4	2.0-2.4	<2.0	<2.0
Interlevel metal insulator, bulk <i>k</i>	<2.1	<2.1	<1.9	<1.9	<1.7	<1.7

Werner Pamler CPR NP

> June 2003 Page 7

manufacturable solutions known

no known solutions

http://public.itrs.net

Dependence of Cu Resistivity on Line Width

Wide conductorWeak scatteringLow resistivity

Narrow conductorStrong scatteringHigh resistivity

Werner Pamler CPR NP

> June 2003 Page 8

ntineon

CPR NP

June 2003

Page 9

Dependence of Cu Resistivity on Line Width

Surface Scattering

Fuchs-Sondheimer model

$$\boldsymbol{r}_{surf} = \boldsymbol{r}(h, w, p, \boldsymbol{I})$$

h, w: conductor height and width p: specularity parameter λ : electron mean free path

Grain Boundary Scattering

Mayadas-Shatzkes model

 $\boldsymbol{r}_{g.b.} = \boldsymbol{r}(d, R, \boldsymbol{l})$

d: ave. grain boundary distance R: Reflection coefficient at g.b. λ : electron mean free path

Nano interconnect technology – Looking at the end of the roadmap

a-Si patterning

350 nm |

a-Si Oxide

Nitride

45 nm Cu Lines in i-line Lithography

a-Si patterning

comformal a-Si deposition

Nitride

350 nm |

Werner Pamler **CPR NP**

> June 2003 Page 11

G. Steinlesberger et al., Proc. IITC 2002

G. Steinlesberger et al., Proc. IITC 2002

Page 13

Werner Pamler CPR NP

June 2003

Page 16

Cu Resistivity

Dependence on Line Width

Infineon

Cu Resistivity: Reduction of Temperature?

ITRS Requirement ρ_{Cu} = 2.2 $\mu\Omega$ cm will not be met below 40 nm

Werner Pamler CPR NP

June 2003

Page 17

G. Schindler et al, proc. AMC 2002

Resistivity

Will Al get a second chance?

Resistivity

Will Al get a second chance?

The World's Narrowest Al Conductor Lines

G. Steinlesberger et al., IITC 2004

Electrical measurements to be made...

Nano interconnect technology – Looking at the end of the roadmap

Werner Pamler CPR NP

> June 2003 Page 19

ITRS Roadmap 2003

Interconnect Technology Requirements (MPU, long-term)

	2010	2012	2013	2015	2016	2018
DRAM 1/2 pitch [nm]	45	35	32	25	22	18
Metal 1 wiring pitch [nm]	108	84	76	60	54	42
Metal 1 asp. ratio (for Cu)	1.8	1.8	1.9	1.9	2	2
Conductor effective resistivity [$\mu\Omega$ cm]	2.2	2.2	2.2	2.2	2.2	2.2
Barrier / cladding thickness [nm]	5	4	3.5	3	2.5	2
Interlevel metal insulator, effective k	2.3-2.6	2.3-2.6	2.0-2.4	2.0-2.4	<2.0	<2.0
Interlevel metal insulator, bulk <i>k</i>	<2.1	<2.1	<1.9	<1.9	<1.7	<1.7

Werner Pamler CPR NP

> June 2003 Page 20

manufacturable solutions known

no known solutions

http://public.itrs.net

CPR NP

June 2003

Page 21

Barriers

Werner Pamler CPR NP

> June 2003 Page 22

ITRS Roadmap 2003

Interconnect Technology Requirements (MPU, long-term)

	2010	2012	2013	2015	2016	2018
DRAM 1/2 pitch [nm]	45	35	32	25	22	18
Metal 1 wiring pitch [nm]	108	84	76	60	54	42
Metal 1 asp. ratio (for Cu)	1.8	1.8	1.9	1.9	2	2
Conductor effective resistivity [$\mu\Omega$ cm]	2.2	2.2	2.2	2.2	2.2	2.2
Barrier / cladding thickness [nm]	5	4	3.5	3	2.5	2
Interlevel metal insulator, effective <i>k</i>	2.3-2.6	2.3-2.6	2.0-2.4	2.0-2.4	<2.0	<2.0
Interlevel metal insulator, bulk <i>k</i>	<2.1	<2.1	<1.9	<1.9	<1.7	<1.7

manufacturable solutions known

no known solutions

http://public.itrs.net

Concepts for Air Gap Technology

"Gas Dome" Concept

- Processing of metallization system in organic dielectric
- Vaporization of dielectric after finishing layers

Gas dome concept

Source: Wade, Semiconductor International, 1999, no.7, p.125

Werner Pamler CPR NP

> June 2003 Page 23

Highest k_{eff} achievable

But: Stability issues, poor thermal conductivity

Concepts for Air Gap Technology

Seal-off Approach

- Remove dielectric material between Cu lines after each metal layer
- Deposit non-conformal dielectric to close the air gap for subsequent processing

Arnal et al., Proc. IITC 2001

- Better stability, better thermal conductivity
- Less k_{eff} reduction

Werner Pamler CPR NP

> June 2003 Page 24

High needle-like features at the top of the air gap topDanger for subsequent CMP

Werner Pamler

CPR NP

June 2003 Page 25

Infineon's Approach

Airgap Formation by Selective Ozone / TEOS Deposition

CPR NP

June 2003

Page 26

Ozone / TEOS CVD

Process regimes

Werner Pamler

CPR NP

June 2003 Page 27

Selective Ozone / TEOS CVD

Substrate Dependence

Silicon, aluminum, SiH₄-based PE-CVD oxide:

- high deposition rate
- Iow wet etch rate
- dense microstructure

Silicon nitride, Ti nitride, PE-TEOS, thermal oxide:

- Iow (no) deposition rate
- high wet etch rate
- porous microstructure ("swiss cheese")

Process Flow for Airgap Creation

Dielectric Layer Deposition

- Base Layer \rightarrow no O₃ / TEOS growth
- Seed layer \rightarrow good O₃ / TEOS growth
- Cu Damascene Technology
- Air Gap Lithography

Air Gap Etch

Selective O₃ / TEOS Deposition

Werner Pamler CPR NP

> June 2003 Page 28

CPR's First Air Gaps

"Base" \rightarrow modified USG-TEOS

Werner Pamler CPR NP

> June 2003 Page 29

Infineon rechnologies

Page 30

CPR's First Air Gaps

Electrical Measurements: Capacitance

Infineon

CPR's First Air Gaps

Electrical Measurements: Capacitance

CPR's First Air Gaps

Infineon technologies

Electrical Measurements: Capacitance

CPR's First Air Gaps

Electrical Measurements: Leakage Current

Werner Pamler CPR NP

> June 2003 Page 33

- Degradation of break-down field for air gap structures
- No degradation of leakage current for moderate fields as required by the ITRS roadmap for the next 10 years.

Werner Pamler

CPR NP

June 2003 Page 34

Air Gap Technology

Simulation of Line-to-line Capacitance

Effective k value ($k_{e\!f\!f}$)

k value of a fictitous uniform material where the same lineto-line capacitance would be measured as for the real, layered structure

Werner Pamler CPR NP

> June 2003 Page 35

Air Gap Technology

Simulation of Line-to-line Capacitance

- Numerical solution of Laplace equation by "Maxwell 2D" (Ansoft Corp.)
- Input data:
 - geometrical dimensions
 - dielectric constants of used materials

Simulation of Line-to-line Capacitance

Simulation of

- electric field (arrows) and
- potential (color shades)
- of an air gap structure.

Nano interconnect technology – Looking at the end of the roadmap

Werner Pamler CPR NP

> June 2003 Page 36

Simulation of Line-to-line Capacitance

Discussion of geometrical effects

Werner Pamler CPR NP

> June 2003 Page 37

Simulation of Line-to-line Capacitance

Discussion of geometrical effects

Structure	Capacitance ratio	k _{eff}
0.35 µm wide air gap, centered	53.7 %	2.5
0.35 µm wide air gap, max. misalignment	52.7 %	2.5

Werner Pamler CPR NP

> June 2003 Page 38

Simulation of Line-to-line Capacitance

Discussion of geometrical effects

Structure	Capacitance ratio	k _{eff}
0.35 µm wide air gap, centered	53.7 %	2.5
0.35 µm wide air gap, max. misalignment	52.7 %	2.5
0.5 µm wide air gap (no spacers)	44.4 %	2.1

Werner Pamler CPR NP

> June 2003 Page 39

Simulation of Line-to-line Capacitance

Discussion of geometrical effects

Structure	Capacitance ratio	k ITRS
0.35 µm wide air gap, centered	53.7 %	Requirement > 2015
0.35 µm wide air gap, max. misalignment	52.7 %	2.5
0.5 µm wide air gap (no spacers)	44.4 %	2.1
Like 3 rd case, but: line aspect ratio = 2	37.9 %	1.7

Werner Pamler CPR NP

> June 2003 Page 40

IFX CPR Air Gap Technology

Outlook

- Reliability measurements
- Find a self-aligned process

Werner Pamler CPR NP

> June 2003 Page 41

Conclusions

Resistivity:

 ρ < 2.2 $\mu\Omega$ cm cannot be met even at reduced temperatures for < 40 nm conductor dimensions ("Size effect").

Diffusion barriers:

Ta films of a few nm are sufficient.

Dielectric constant:

Air gap technology can reduce *effective* dielectric constant down to < 1.7.

Werner Pamler CPR NP

June 2003

Page 43

Acknowledgements

Manfred Engelhardt

Andreas Stich

Zvonimir Gabric

Martin Traving

Günther Schindler

Gernot

Steinlesberger

Werner Steinhögl